Quark Masses and Chiral Symmetry

  • H. Leutwyler
Part of the The Subnuclear Series book series (SUS, volume 22)


The low energy properties of the standard model are governed by the Lagrangian of SU(3)colourx U(1)e.m.. If the masses of the three light quarks as well as the electromagnetic interaction are neglected, this Lagrangian is invariant under a group of chiral transformations. Since the ground state is not symmetric under this group, the spectrum contains massless Goldstone bosons which dominate the low energy structure of the theory. As the quark masses are turned on, the Goldstone bosons pick up mass, but the poles generated by them still dominate the behvior of the Green’s functions at small momenta. I show how to systematically determine the low energy structure of the theory by considering a simultaneous expansion in powers of the momenta and in powers of mu, md, ms. As applications of the method, I discuss some low energy predictions for form factors, for ππ-scattering and for η-decay and review the information on the quark mass ratios mu: md: ms which follows from the mass spectrum of the pseudoscalar mesons.


Quark Mass Chiral Symmetry Ward Identity Goldstone Boson Chiral Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Gasser and H. Leutwyler, Phys.Rep. 87 (1982) 77.CrossRefGoogle Scholar
  2. [2]
    M. Gell-Mann, R.J. Oakes and B. Renner, Phys. Rev. 175 (1968) 2195.CrossRefGoogle Scholar
  3. [3]
    L.-F. Li and H. Pagels, Phys.Rev.Lett. 26 (1971) 1204.CrossRefGoogle Scholar
  4. [4]
    S. Weinberg, Phys.Rev.Lett 17 (1966) 616.CrossRefGoogle Scholar
  5. [5]
    J. Gasser, M.P. Locher and A. Švarc, in preparation.Google Scholar
  6. [6a]
    W.A. Bardeen, Phys.Rev. 184 (1969) 1848CrossRefGoogle Scholar
  7. [6b]
    J. Wess and B. Zumino, Phys.Lett. 37B (1971) 95Google Scholar
  8. [6c]
    K. Fujikawa, Phys.Rev. D21 (1980) 2848.Google Scholar
  9. [7]
    S. Weinberg, Phys.Rev. 166 (1968) 1586.CrossRefGoogle Scholar
  10. [8]
    R. Dashen and M. Weinstein, Phys.Rev. 183 (1969) 1245.CrossRefGoogle Scholar
  11. [9]
    S. Coleman, J. Wess and B. Zumino, Phys.Rev. 177 (1969) 2247.CrossRefGoogle Scholar
  12. [10]
    S. Weinberg, Physica 96A (1979) 327.Google Scholar
  13. [11]
    J. Gasser and H. Leutwyler, CERN-TH3689, to appear in Annals of Physics; CERN-TH3798, to be published in Nuclear Physics.Google Scholar
  14. [12]
    J. Gasser and H. Leutwyler, CERN-TH3829, to be published in Nuclear Physics.Google Scholar
  15. [13a]
    R.E. Behrends and A. Sirlin, Phys.Rev.Lett. 4 (1960) 186CrossRefGoogle Scholar
  16. [13b]
    M. Ademollo and R. Gatto, Phys.Rev.Lett. 13 (1964) 264.CrossRefGoogle Scholar
  17. [14]
    H. Leutwyler and M. Roos, Z.Phys. 25 (1984) 91.Google Scholar
  18. [15]
    H. Leutwyler, Acta Physica Polonica B15 (1984) 383.Google Scholar
  19. [16a]
    D.G. Sutherland, Phys.Lett. 23 (1966) 384CrossRefGoogle Scholar
  20. [16b]
    J. Bell and D.G. Sutherland, Nucl.Phys. B4 (1968) 315.CrossRefGoogle Scholar
  21. [17]
    J. Gasser and H. Leutwyler, CERN-TH3828, to be published in Nuclear Physics.Google Scholar
  22. [18]
    C. Roiesnel and T.N. Truong, Nucl.Phys. B187 (1981) 293.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • H. Leutwyler
    • 1
  1. 1.Institut für theoretische PhysikBernSwitzerland

Personalised recommendations