Skip to main content

Positive Photoresists

  • Chapter
Book cover Semiconductor Lithography

Part of the book series: Microdevices ((MDPF))

  • 841 Accesses

Abstract

After exposure to 150- to 800-nm radiation, positive photoresists develop more rapidly in the exposed region at a rate R which is about ten times greater than the unexposed rate, R 0. For various lithographic processing, the various preferred profiles (Table 2-1-1) are formed at different doses and R/R 0 development conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Kosar, Light Sensitive Systems, Wiley, New York, 1965.

    Google Scholar 

  2. M. Dinaburg, Photosensitive Diazo Compounds, Focal Press, New York, 1968.

    Google Scholar 

  3. P. Hanson, Photogr. Sci. Eng. 14, 438 (1970)

    MathSciNet  Google Scholar 

  4. J. Pacansky and J. Lyerla, IBM J. Res. Dev. 23, 42 (1979); J. Electrochem. Soc. 124, 862 (1977).

    Google Scholar 

  5. H. Meier and K. Zeller, Angew. Chem. Int. Ed. Engl. 14, 32 (1975).

    Google Scholar 

  6. M. Kaplan and D. Meyerhofer, RCA Rev. 40, 170 (1979); Polym. Eng. Sci. 20, 1073 (1980).

    Google Scholar 

  7. D. Meyerhofer, IEEE Trans. Electron Devices ED-22, 921 (1980).

    Google Scholar 

  8. W. De Forest, Photoresist Materials and Processes, McGraw-Hill, New York, 1975, p. 54.

    Google Scholar 

  9. G. Willson, R. Miller, D. McKean, T. Tompkins, N. Clecak, and D. Hofer, SPE RETEC Photopolymers, Ellen ville, N.Y., 1982, p. 111, Organic Coatings Proceedings, Am. Chem. Soc. 40, 54 (1983), U. S. Patent 4, 397,937 (1983), IBM; Polym. Eng. Sci. 23, 1004 (1983).

    Google Scholar 

  10. W. Babie, M. Chow, and W. Moreau, Am. Chem. Soc. Org. Coat. Prepr. 48, 53 (1983).

    Google Scholar 

  11. European Patent 68, 346, Chem. Abstr. 99, 30749 (1983), Hoechst.

    Google Scholar 

  12. U. S. Patent 4,207,107 (1981), RCA.

    Google Scholar 

  13. U.S. Patent 4,173,470 (1979), Bell.

    Google Scholar 

  14. U.S. Patent 4,123,279 (1978), Fuji.

    Google Scholar 

  15. S. Farenholtz, Am. Chem. Soc. Org. Coat. 35, 311 (1975).

    Google Scholar 

  16. A. Knop, Applications of Phenolic Resins, Springer Verlag, Berlin, 1979.

    Google Scholar 

  17. E. Gipstein, A. Duano, and T. Tompkins, J. Electrochem. Soc. 129, 201 (1981).

    Google Scholar 

  18. B. Grant, N. Clecak, R. Tureg, and C. Willson, IEEE Trans. Electron Devices ED-28, 1300 (1981), U.S. Patent 4,284,706 (1980).

    Google Scholar 

  19. M. Bowden, L. Thompson, S. Farenholtz, and E. Doerries, J. Electrochem. Soc. 128, 1304 (1981); U.S. Patent 4,289,845 (1982), Bell.

    Google Scholar 

  20. U.S. Patent 4,398,001 (1983), IBM.

    Google Scholar 

  21. H. Hiroaka and L. Welsh, Am. Chem. Soc. Org. Coat. Prepr. 48, 48 (1983).

    Google Scholar 

  22. U.S. Patent 4,250,247 (1981), Hoechst.

    Google Scholar 

  23. Japanese Patent 75,127,619; Chem. Abstr. 85, 12367 (1975).

    Google Scholar 

  24. Japanese Patent 76,120,712; Chem. Abstr. 86, 13177 (1976).

    Google Scholar 

  25. French Patent 2,477,294; Chem. Abstr. 96, 43856 (1982).

    Google Scholar 

  26. Japanese Patent 82,173,941; Chem. Abstr. 99, 13965 (1983).

    Google Scholar 

  27. U.S. Patent 3,637,384 (1972), GAF; U.S. Patent 4,384,037 (1983), JSR.

    Google Scholar 

  28. U.S. Patent 3,890,153 (1975), Phillips.

    Google Scholar 

  29. US. Patent 4,339,521 (1981), Siemens; German Patent 2,631,535; Chem. Abstr. 86, 198007 (1976).

    Google Scholar 

  30. Japanese Patent 83,48,045; Chem. Abstr. 99, 80066h (1983).

    Google Scholar 

  31. U.S. Patent 3,661,582 (1972), Bell.

    Google Scholar 

  32. U.S. Patent 4,365,019 (1982), Kodak.

    Google Scholar 

  33. European Patent 70,201; Chem. Abstr. 98, 189014 (1982).

    Google Scholar 

  34. U.S. Patent 4,115,128 (1981), Fuji.

    Google Scholar 

  35. U.S. Patent 4,307,173 (1979), Hoechst

    Google Scholar 

  36. U.S. Patent 4,009,033 (1978), IBM.

    Google Scholar 

  37. U.S. Patent 4,036,644 (1979), IBM.

    Google Scholar 

  38. U.S. Patent 4,059,449 (1977), RCA.

    Google Scholar 

  39. Japanese Patent 77,126,221; Chem. Abstr. 89, 120920 (1977).

    Google Scholar 

  40. Russian Patent 744,426.

    Google Scholar 

  41. U.S. Patent 4,148,654 (1982), Shipley.

    Google Scholar 

  42. Japanese Patent 80,129,341; Chem. Abstr. 80, 129341 (1978).

    Google Scholar 

  43. U.S. Patent 3,130,047 (1964), Azoplate.

    Google Scholar 

  44. U.S. Patent 3,264,104 (1966), Azoplate.

    Google Scholar 

  45. U.S. Patent 3,827,908 (1974), IBM.

    Google Scholar 

  46. U.S. Patent 4,336,319 (1981), Fuji.

    Google Scholar 

  47. U.S. Patent 4,259,430 (1981), IBM.

    Google Scholar 

  48. U.S. Patent 4,089,766 (1979), IBM.

    Google Scholar 

  49. Japanese Patent 78,135,621; Chem. Abstr. 90, 130686 (1979).

    Google Scholar 

  50. Russian Patent 731,413; Chem. Abstr. 93, 177308 (1980).

    Google Scholar 

  51. U.S. Patent 3,634,082 (1972), Shipley.

    Google Scholar 

  52. German Patent 2,944,237; Chem. Abstr. 93, 15922 (1980).

    Google Scholar 

  53. U.S. Patent 4,007,047 (1977), IBM.

    Google Scholar 

  54. J. Magerlin and D. Webb, IBM J. Res. Dev. 24, 561 (1980).

    Google Scholar 

  55. U.S. Patent 4,104,070 (1980), IBM.

    Google Scholar 

  56. Japanese Patent 80,32,088; Chem. Abstr. 93, 1995530 (1980).

    Google Scholar 

  57. Russian Patent 595,694; Chem. Abstr. 88, 161485 (1978).

    Google Scholar 

  58. French Patent 2,017,782, RCA.

    Google Scholar 

  59. K. Nakumura, Chem. Lett. 1972, 763 (1972).

    Google Scholar 

  60. A. Ouano, Am. Chem. Soc. Org. Coat. 48, 42 (1983).

    Google Scholar 

  61. A. Ouano, Polym. Eng. Sci. 18, 306 (1978).

    Google Scholar 

  62. D. Ilten and R. Sutton, J. Electrochem. Soc. 119, 539 (1972).

    Google Scholar 

  63. B. Broyde, J. Electrochem. Soc. 117, 1555 (1970).

    Google Scholar 

  64. A. Paramov, Chem. Abstr. 81, 97720 (1974).

    Google Scholar 

  65. J. Shaw, M. Frisch, and F. Dill, IBM J. Res. Dev. 21, 219 (1977).

    Google Scholar 

  66. Chem. Abstr. 84, 31812 (1976).

    Google Scholar 

  67. Chem. Abstr. 84, 4214 (1976).

    Google Scholar 

  68. Chem. Abstr. 82, 111177 (1975).

    Google Scholar 

  69. T. Shankoff, J. Brunning, and R. Johnston, Polym. Eng. Sci. 20, 1102 (1980).

    Google Scholar 

  70. D. Leers, Solid State Technol. March 1981, p. 91.

    Google Scholar 

  71. K. Jain, C. Willson, and B. Lin, IEEE Electron Device Lett. EDL-3, 53 (1982); IBM J. Res. Dev. 26, 151 (1982).

    Google Scholar 

  72. B. Lin, J. Vac. Sci. Technol. 19, 1313 (1981); U.S. Patent 4,360,585 (1983), GE.

    Google Scholar 

  73. U.S. Patent 4,239,787 (1981), Bell.

    Google Scholar 

  74. S. MacDonald, R. Miller, C. Willson, G. Feinberg, R. Gleason, R. Halverson, W. MacIntyre, and W. Motsiff, Kodak Microelectronics, 1982, p. 114.

    Google Scholar 

  75. U.S. Patent 4,104,070 (1978).

    Google Scholar 

  76. L. Katrisyma, Russ. Chem. Rev. 35, 388 (1966).

    Google Scholar 

  77. C. Willson, in Introduction to Microlithography, edited by C. Willson and L. Thompson, Am. Chem. Soc. Symp. Ser. 219, 88–148 (1983).

    Google Scholar 

  78. B. Griffing, J. Vac. Sci. Technol. 19, 1423 (1981).

    Google Scholar 

  79. L. Mury, J. Matthews, and C. Wood, SPIE Proc. 334, 241 (1982).

    Google Scholar 

  80. P. Van Pelt, SPIE Proc. 275, 150 (1981).

    Google Scholar 

  81. Y. Kawamura, J. Appl. Phys. 53, 6489 (1981), Appl. Phys. Lett. 40, 374 (1982).

    Google Scholar 

  82. N. Veno, K. Sugita, S. Konishi, and K. Tanimoto, Jpn. J. Appl. Phys. 20, L709 (1981).

    Google Scholar 

  83. K. Sugita, N. Ueno, S. Konishi, and Y. Suzuki, J. Photogr. Sci. Eng. 27, 149 (1983).

    Google Scholar 

  84. J. Bachus, Solid State Technol. Feb. 1982, p. 124.

    Google Scholar 

  85. D. Doane, Electrochem. Soc. Ext. Abstr. No. 332 (1980).

    Google Scholar 

  86. T. McGrath, Solid State Technol. Dec. 1983, p. 165.

    Google Scholar 

  87. W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. 138, 459 (1970).

    Google Scholar 

  88. M. King, IEEE Trans. Electron Devices ED-26, 711 (1979).

    Google Scholar 

  89. A. Offner, Photogr. Sci. Eng. 13, 374 (1979).

    Google Scholar 

  90. S. Iwamatsu and K. Asonami, Solid State Technol. May 1980, p. 81.

    Google Scholar 

  91. B. Ranby and J. Rabek, Photodegradation, Photooxidation, and Photostabilization of Polymers, Wiley, New York, 1975, pp. 143–164.

    Google Scholar 

  92. E. Dane and J. Gullet, Macromolecules 6, 230 (1974).

    Google Scholar 

  93. J. MacCallum and C. Schoff, Trans. Faraday Soc. 67, 2383 (1971), 67, 2372 (1971).

    Google Scholar 

  94. A. Gupta, R. Liang, F. Tsay, and J. Moacanin, Macromolecules 13, 1696 (1980).

    Google Scholar 

  95. H. Hiroaka, IBM J. Res. Dev. 21, 121 (1977).

    Google Scholar 

  96. R. Fox, L. Issacs, and S. Stokes, J. Polym. Sci. A1, 1079 (1963).

    Google Scholar 

  97. K. Harada and S. Sugawara, J. Appl. Polym. Sci. 27, 1441 (1982).

    Google Scholar 

  98. N. Viswanathan and H. Santini, Kodak Microelectronics Seminar, 1982, p. 47.

    Google Scholar 

  99. M. Lanagan, S. Lindsey, and N. Viswanathan, Jpn. J. Appl. Phys. 22, 267 (1983).

    Google Scholar 

  100. M. Tsuda, Y. Nakamura, S. Oikawa, H. Nagata, Y. Yakota, H. Nakane, T. Tsunori, Y. Nakase, and T. Mifusi, Photogr. Sci. Eng. 23, 290 (1979).

    Google Scholar 

  101. German Patent 2,911,286, Tokyo Ohko; Chem. Abstr. 92, 86003 (1980).

    Google Scholar 

  102. C. Wilkins, E. Reichmanis, and E. Chandross, J. Electrochem. Soc. 127, 2510 (1980); U.S. Patent 4,382,120 (1983), Bell.

    Google Scholar 

  103. E. Reichmanis, C. Wilkins, and E. Chandross, J. Vac. Sci. Technol. 19, 1338 (1981).

    Google Scholar 

  104. Y. Amerik and J. Guillet, Macromolecules 4, 375 (1971).

    Google Scholar 

  105. N. Grassie and A. Davidson, Polym. Degr. Stabil. 3, 45 (1980).

    Google Scholar 

  106. U.S. Patent 3,853,814 (1974), J. Guillet.

    Google Scholar 

  107. C. Wilkins, E. Reichmanis, and E. Chandross, J. Electrochem. Soc. 129, 2553 (1982).

    Google Scholar 

  108. European Patent 48,889, Siemens; Chem. Abstr. 97, 31279 (1982).

    Google Scholar 

  109. K. Nate and T. Kobayashi, J. Electrochem. Soc. 128, 1395 (1981).

    Google Scholar 

  110. Japanese Patent 83,93,047; Chem. Abstr. 99, 96853 (1983).

    Google Scholar 

  111. T. Bowmer, C. Wilkins, E. Reichmanis, and M. Hellman, Polymer 20, 2661 (1982).

    Google Scholar 

  112. Japanese Patent 83,49,942; Chem. Abstr. 99, 61731 (1983), 99, 30758 (1983).

    Google Scholar 

  113. British Patent 2,099,168; Chem. Abstr. 98, 98822 (1983).

    Google Scholar 

  114. W. Moreau, Opt. Eng. 22, 181 (1983).

    Google Scholar 

  115. Japanese Patent 83,48,048; Chem. Abstr. 99, 30757 (1983).

    Google Scholar 

  116. U.S. Patent 4,278,754 (1981), Oki.

    Google Scholar 

  117. Y. Yamashita, K. Ogure, M. Kunishi, R. Kawazawa, S. Ohno, and Y. Mizokawi, J. Vac. Sci. Technol. 16, 2026 (1979).

    Google Scholar 

  118. J. Guillet, Macromolecules 5, 212 (1972).

    Google Scholar 

  119. U.S. Patent 4,276,369 (1981), Tokyo Ohko.

    Google Scholar 

  120. U.S. Patent 4,243,740 (1981), Tokyo Ohko.

    Google Scholar 

  121. J. Kwiwi and W. Schnabel, Macromolecules 11, 468 (1978).

    Google Scholar 

  122. M. Gazard, A. Chapiro, J. Dubois, and M. Duchesne, Polym. Eng. Sci. 20, 1069 (1980).

    Google Scholar 

  123. E. Chandross, C. Wilkins, E. Reichmanis, and M. Hartless, Solid State Technol. Aug. 1981, p. 81.

    Google Scholar 

  124. U. S. Patent 3,849,137 (1974).

    Google Scholar 

  125. H. Barzynski and D. Sanger, Angew. Makromol. Chem. 93, 131 (1981).

    Google Scholar 

  126. U.S. Patent 4,086,210 (1978), Kodak.

    Google Scholar 

  127. C. Petropoulos, J. Polym. Sci. Polym. Chem. Ed. 15, 1637 (1977).

    Google Scholar 

  128. U.S. Patent 3,991,033 (1976), DuPont.

    Google Scholar 

  129. US. Patent 4,150,989 (1979), DuPont.

    Google Scholar 

  130. H. Ito and C. Willson, in Polymers in Electronics, edited by T. Davidson, Am. Chem. Soc, 1984, p. 11; Polym. Eng. Sci. 23, 1012 (1983).

    Google Scholar 

  131. H. Ito and C. Willson, SPE RETEC Photopolymers, Ellenville, N.Y., 1982, p. 331.

    Google Scholar 

  132. U.S. Patent 3,849,137 (1974), Badische.

    Google Scholar 

  133. U.S. Patent 3,917,483 (1975), Xerox.

    Google Scholar 

  134. U.S. Patent 4,108,839 (1978), DuPont.

    Google Scholar 

  135. U.S. Patent 3,963,491 (1976), Xerox.

    Google Scholar 

  136. U.S. Patent 3,915,706 (1975), Xerox.

    Google Scholar 

  137. U.S. Patent 3,984,253 (1976), Kodak.

    Google Scholar 

  138. U.S. Patent 3,923,514 (1975), Xerox.

    Google Scholar 

  139. U.S. Patent 3,940,507 (1976), RCA.

    Google Scholar 

  140. U.S. Patent 3,779,778 (1973), 3M.

    Google Scholar 

  141. U.S. Patent 4,248,957 (1981), Hoechst.

    Google Scholar 

  142. U.S. Patent 4,250,247 (1981), Hoechst.

    Google Scholar 

  143. J. Crivello and J. Lam, J. Polym. Sci. Polym. Chem. Ed. 17, 2877 (1979).

    Google Scholar 

  144. J. Crivello, Am. Chem. Soc. Org. Coat. 48, 65 (1983), Polym. Eng. Sci. 23, 953 (1983).

    Google Scholar 

  145. U.S. Patent 4,193,799 (1979), GE.

    Google Scholar 

  146. U.S. Patent 4,245,029 (1981), GE.

    Google Scholar 

  147. U.S. Patent 4,256,828 (1981), 3M.

    Google Scholar 

  148. U.S. Patent 4,156,035 (1978), W. Grace.

    Google Scholar 

  149. S. Schlesinger, Photogr. Sci. Eng. 18, 187 (1974), Polym. Eng. Sci. 14, 513 (1974).

    Google Scholar 

  150. J. Burgess and D. Schaefer, J. Vac. Sci. Technol. 6, 134 (1969).

    Google Scholar 

  151. H. Steppan, G. Buhr, and H. Vollmann, Angew. Chem. Int. Ed. Engl. 21, 455 (1982), reference 50 therein.

    Google Scholar 

  152. A. Monahan, Macromolecules 1, 408 (1968).

    Google Scholar 

  153. W. Meyer, B. Curtis, and H. Brunner, Microelectron. Eng. 1, 29 (1983), U. S. Patent 4,443,044 (1984), RCA.

    Google Scholar 

  154. G. Sheldrick and O. Vogl. Polym. Eng. Sci. 16, 68 (1976).

    Google Scholar 

  155. U.S. Patent 3,375,110 (1968), Union Carbide.

    Google Scholar 

  156. U.S. Patent 3,763,397 (1969), Kodak.

    Google Scholar 

  157. T. Wolf, G. Taylor, T. Venkatesan, and R. Kraetsch, Paper F-6, Electron, Ion, and Photon Beam Conference, Los Angeles, 1983.

    Google Scholar 

  158. H. Craighead, J. White, R. Howrad, L. Jackel, R. Behringer, J. Sweeney, and R. Epworth, Paper J-1, Electron, Ion, and Photon Beam Conference, Los Angeles, 1983; J. Vac. Sci. Technol. B1, 1186 (1983).

    Google Scholar 

  159. H. Hiroaka, L. Welsh, and J. Bargon, Paper F-1, Electron, Ion, and Photon Beam Conference, Los Angeles, 1983; J. Vac. Sci. Technol. B1, 1062 (1983).

    Google Scholar 

  160. M. Tsuida and S. Oikawa, Photogr. Sci. Eng. 23, 177 (1979).

    Google Scholar 

  161. M. Janai and P. Rudman, Photogr. Sci. Eng. 20, 234 (1976).

    Google Scholar 

  162. S. Pappas and J. Jilek, Photogr. Sci. Eng. 23, 140 (1979).

    Google Scholar 

  163. W. Sorenson and T. Campbell, Preparative Methods of Polymer Chemistry, Wiley, New York, 1968, pp. 342–398.

    Google Scholar 

  164. J. Pacansky, Polym. Eng. Sci. 20, 1049 (1980).

    Google Scholar 

  165. U.S. Patent 4,377,631 (1983), Hunt.

    Google Scholar 

  166. E. Vollenbroek, E. Spiertz, and H. Kroon, Polym. Eng. Sci. 23, 925 (1983).

    Google Scholar 

  167. T. Gupta, Eur. Polym. J. 17, 1127 (1981).

    Google Scholar 

  168. C. G. Willson, in Introduction to Microlithography, edited by L. Thompson, C. Willson, and M. Bowden, Am. Chem. Soc. Symp. Ser. 219, 102–104 (1983).

    Google Scholar 

  169. B. Ranby and J. Rabek, Photodegradation, Photooxidation, and Photostabilization of Polymers, Wiley, New York, 1977, pp 323–325.

    Google Scholar 

  170. J. Burgess and D. Schafer, J. Vac. Sci. Technol. 6, 135 (1969).

    Google Scholar 

  171. P. Trefonas, R. Miller, D. Hoefr, and R. West, J. Polym. Sci. Polym. Lett. Ed. 21, 823 (1983).

    Google Scholar 

  172. T. Pampalone, Solid State Technol. June 1984, p. 115.

    Google Scholar 

  173. D. Hofer, A. Neureuther, C. Willson, and R. Miller, SPIE Advances in Resist Technology 469, 108 (1984).

    Google Scholar 

  174. T. Deutsch and M. Geis, J. Appl. Phys. 54, 7201 (1983).

    Google Scholar 

  175. J. Sheats, Appl. Phys. Lett. 44, 1016 (1984).

    Google Scholar 

  176. U. S. Patent 4,454,221 (1984).

    Google Scholar 

  177. B. Dickens, Polymer 25, 706 (1984).

    Google Scholar 

  178. U. S. Patent 4,444,195 (1984), Konishiroku Ind.

    Google Scholar 

  179. U. S. Patent 4,460,674 (1984), Konishiroku Ind.

    Google Scholar 

  180. M. Nakase, Photogr. Sci. Eng. 27, 254 (1983).

    Google Scholar 

  181. Japanese Patent 58,190,946, Chem. Abstr. 100, 165446 (1984).

    Google Scholar 

  182. Czechoslovakian Patent 213,016, Chem. Abstr. 100, 219037 (1984).

    Google Scholar 

  183. German Patent 3,220,816, Chem. Abstr. 100, 219047 (1984).

    Google Scholar 

  184. Russian Patent 1,068,879, Chem. Abstr. 100, 219051 (1984).

    Google Scholar 

  185. European Patent Application EP 95,388, Chem. Abstr. 100, 219051 (1984).

    Google Scholar 

  186. Japanese Patent 57,201,229, Chem. Abstr. 100, 129885 (1984).

    Google Scholar 

  187. Japanese Patent 57,162,330, Chem. Abstr. 100, 15329 (1984).

    Google Scholar 

  188. Anon, Res. Discl. 240, 173 (1984), Chem. Abstr. 100, 200822 (1984).

    Google Scholar 

  189. U. S. Patent 4,456,760 (1984), BASF.

    Google Scholar 

  190. G. Taylor, Solid State Technol. June 1984, p. 105.

    Google Scholar 

  191. D. Meyerhofer, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1984, p. 305.

    Google Scholar 

  192. U.S. Patent 4,405,708 (1983), U. S. Phillips.

    Google Scholar 

  193. U. S. Patent 4,404,272 (1983), Hoechst.

    Google Scholar 

  194. U. S. Patent 4,474,864 (1984), IBM.

    Google Scholar 

  195. S. Pappas, B. Pappas, L. Gatechair, and W. Schnabel, J. Polym. Sci. 22, 69 (1984).

    Google Scholar 

  196. T. Pampalone, M. Hanifan, S. Jain, and K. Krieger, J. Electrochem. Soc. 131, 2670 (1984).

    Google Scholar 

  197. F. Branwell, S. Fahrenholtz, R. Jadujura, and C. Paley, J. Chem. Educ. 55, 403 (1978).

    Google Scholar 

  198. U.S. Patent 4,460,674 (1984), Konishiroku Ind.

    Google Scholar 

  199. U.S. Patents 4,457,999 and 4,458,000 (1984), Am. Hoechst.

    Google Scholar 

  200. German Patent 3,337,315, Chem. Abstr. 101, 181207 (1984).

    Google Scholar 

  201. M. Ishikawa, J. Polym. Sci. 22, 669 (1984).

    Google Scholar 

  202. A. Vanier, Mikroelektronika 13, 3119 (1984) (Izd. Sov. Radio), Chem. Abstr. 101, 219624 (1984).

    Google Scholar 

  203. Japanese Patent 59,92,532, Chem. Abstr. 101, 238180 (1984).

    Google Scholar 

  204. P. Dyer and J. Sidhu, J. Appl. Phys. 57, 1420 (1985).

    Google Scholar 

  205. J. Freenet, T. Tessier, C. Willson, and H. Ito, Macromolecules 18, 317 (1985).

    Google Scholar 

  206. T. Shankoffand A. Trozollo, Photogr. Sci. Eng. 19, 173 (1975).

    Google Scholar 

  207. Japanese Patent 59,155,838, Chem. Abstr. 102, 36775 (1985).

    Google Scholar 

  208. East German Patent 211,415, Chem. Abstr. 102, 140893 (1985).

    Google Scholar 

  209. Japanese Patent 59,180,545, Chem. Abstr. 102, 140893 (1985).

    Google Scholar 

  210. R. Miller, D. Hofer, D. McNean, C. Willson, P. West, and P. Trefonis, Am. Chem. Soc. Symp. Ser. 266, 293 (1984).

    Google Scholar 

  211. Y. Saotome, H. Gokan, K. Saigo, M. Suzuki, and Y. Ohnishi, J. Electrochem. Soc. 132, 909 (1985).

    Google Scholar 

  212. U.S. Patent 4,522,911 (1985), IBM.

    Google Scholar 

  213. U.S. Patent 4,529,682 (1985), Hunt.

    Google Scholar 

  214. U.S. Patent 4,522,911 (1985), IBM.

    Google Scholar 

  215. J. Ziegler, L. Harrah, and W. Johnson, Proc. SPIE Int. Soc. Opt. Eng. 539, 166 (1985), U.S. Patent 4,587,205 (1986).

    Google Scholar 

  216. Japanese Patent 60,52,845 (1985), JSR; Chem. Abstr. 103, 113359 (1985).

    Google Scholar 

  217. E. Alling and C. Stauffer, SPIE Opt. Eng. 539, 194 (1985).

    Google Scholar 

  218. U.S. Patent 4,546,066 (1985), IBM.

    Google Scholar 

  219. U.S. Patent 4,544,627 (1985), Fuji.

    Google Scholar 

  220. H. Klose, R. Seguish, and W. Arder, IEEE Trans. Electron Devices ED-32, 1654 (1985).

    Google Scholar 

  221. U.S. Patent 4,524,121 (1985), Rohm & Haas.

    Google Scholar 

  222. German Patent 3,344,202 (1985), Merck; Chem. Abstr. 103, 79517 (1985).

    Google Scholar 

  223. U. S. Patent 4,546,064 (1985), NAP.

    Google Scholar 

  224. A. Schultz, P. Frank, B. Griffing, and A. Young, J. Polym. Sci. 23, 1749 (1985).

    Google Scholar 

  225. S. Pappas, J. Imag. Technol. 14, 146 (1985).

    Google Scholar 

  226. M. de Grandpre, D. Vidusek, and M. Legenza, SPIE Resist Technol. 539, 103 (1985).

    Google Scholar 

  227. Z. Katovic and M. Stefanic, Ind. Eng. Chem. Prod. Res. Dev. 24, 179 (1985).

    Google Scholar 

  228. M. S. Pak, D. Mammato, S. Jam, and D. Durham, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 247.

    Google Scholar 

  229. M. Watts and D. DeBreun, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 285.

    Google Scholar 

  230. S. Turner, R. Arcus, C. Houle, and W. Schleiger, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 35.

    Google Scholar 

  231. J. Frechet, F. Houlihan, F. Bouchard, E. Eichler, A. Huit, R. Allen, S. MacDonald, H. Ito, and C. Willson, SPE RETEC Photopolymers, Ellenville, N.Y., 1985, p. 1.

    Google Scholar 

  232. W. Hinsberg, C. Willson, and K. Kanazawa, Proc. SPIE Resist Technol. 539, 6 (1985).

    Google Scholar 

  233. F. Buiguez, J. Guibert, C. Rosilic, A. Rosilio, F. Schue, R. Sagnes, B. Serres, L. Girial, W. Abou-Madi, and C. Montginoul, Microcircuit Engineering, edited by H. Beneking and A. Heuberger, Academic Press, New York, 1985, p. 471.

    Google Scholar 

  234. A. Furuta, M. Hanabata and Y. Uemiura, J. Vac. Sci. Technol. B4, 430 (1986)

    Google Scholar 

  235. F. Houlihan, F. Bouchard, J. Frechet, and C. Willson, Macromolecules 14, 13 (1986).

    Google Scholar 

  236. ILS. Patent 4,596,763 (1986), Hoechst.

    Google Scholar 

  237. H. Phillips, A. Cole, Y. Liu, and T. Sitnik, Appl Phys. Lett. 48, 192, (1986); 48, 212 (1986).

    Google Scholar 

  238. U.S. Patent 4,588,670 (1986), Hoechst.

    Google Scholar 

  239. U.S. Patent 4,601,969 (1986), IBM.

    Google Scholar 

  240. J. Frechet, F. Bouchard, F. Houlihan, B. Kryczka, E. Eichler, N. Clecak, and C. Willson, J. Imag. Sci. 30, 59 (1986).

    Google Scholar 

  241. U. S. Patent 4,550,069 (1986), Hoechst (PM acetate).

    Google Scholar 

  242. P. Paniez and A. Weill, Microelectron. Eng. 4, 57 (1985).

    Google Scholar 

  243. European Patent Appl. EP 140,273, Chem. Abstr. 104, 197029 (1986).

    Google Scholar 

  244. U.S. Patent 4,551,416 (1985), AT & T Bell Labs.

    Google Scholar 

  245. C. Oscuh, E. Brahim, F. Jopf, M. McFarland, A. Mooring, and C. Wu, SPIE Proc. 631, 68 (1986).

    Google Scholar 

  246. U. S. Patent 4,584,309 (1986), Allied.

    Google Scholar 

  247. E. Reichmanis, A. Novembre, R. Tarascon, and A. Shugard, Polym. Mater. Sci. Eng. 55, 299 (1986); SPIE Proc. 631, 40 (1986).

    Google Scholar 

  248. J. Frechet, T. Iizawa, F. Bouchard, M. Stanciulescu, C. Willson, and N. Clecak, Polym. Mater. Sci. Eng. 55, 299 (1986).

    Google Scholar 

  249. T. Pampalone, A. Gilfillan and P. Zanzucchi, J. Electrochem. Soc. 133, 1917 (1986).

    Google Scholar 

  250. R. Turner, K. Ahn, and C. Willson, Polym. Mater. Sci. Eng. 55, 608 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Moreau, W.M. (1988). Positive Photoresists. In: Semiconductor Lithography. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0885-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0885-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8228-0

  • Online ISBN: 978-1-4613-0885-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics