Developing Resist Images

  • Wayne M. Moreau
Part of the Microdevices book series (MDPF)

Abstract

The exposure process induces chemical changes in polymers such as random scission or cross-linking and molecular rearrangements in small molecules added to polymers. The chemical products are distinguished from the unexposed reactants by a developer or process of development (such as heating) which attempts to maximize the readout:
$$\textup{Developing readout} = \frac{\textup{Exposed resist properties}}{\textup{Unexposed resist properties}}$$

Keywords

Styrene Methacrylate Polycarbonate Sulfite Butadiene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Dill, A. Neureuther, J. Tuttle, and E. Walker, IEEE Trans. Electron Devices ED-22, 456 (1975).Google Scholar
  2. 2.
    C. Decken and D. Peters, Solid State Technol. Jan. 1980, p. 76.Google Scholar
  3. 3.
    M. Yamada, S. Mattori, and S. Monta, J. Electrochem. Soc. 129, 2598 (1982).Google Scholar
  4. 4.
    I. Adesida, J. Chinn, L. Rathbun, and E. Wolf, J. Vac. Sci. Technol. 21, 666 (1982).Google Scholar
  5. 5.
    M. Tsuda, S. Orkawa, W. Kanai, A. Yokota, I. Hijikata, A. Uehara, and H. Nakane, J. Cac. Sci. Technol. 19, 259 (1981).Google Scholar
  6. 6.
    G. Taylor, T. Wolf, and J. Moran, J. Vac. Sci. Technol. 19, 872 (1981).Google Scholar
  7. 7.
    P. Blais, Solid State Technol. August, 1977, p. 78.Google Scholar
  8. 8.
    U.S. Patent 4,241,165 (1980), Motorola; U.S. Patent 4,278,753 (1981), Horizons.Google Scholar
  9. 9.
    G. Taylor and T. Wolf, J. Electrochem. Soc. 127, 2665 (1980); U.S. Patent 4,232,110 (1980) Bell Labs.Google Scholar
  10. 10.
    M. Chang and J. Chen, Appl. Phys. Lett. 33, 892 (1978).Google Scholar
  11. 11.
    M. Bowden and L. Thompson, Polym. Eng. Sci. 14, 525 (1974).Google Scholar
  12. 12.
    H. Hiroaka, Appl. Phys. Lett. 31, 503 (1977).Google Scholar
  13. 13.
    H. Frisch, Polym. Eng. Sci. 20, 2 (1980).Google Scholar
  14. 14.
    S. Chen and J. Edin, Polym. Eng. Sci. 20, 40 (1980).Google Scholar
  15. 15.
    G. Park, in Diffusion in Polymers, edited by J. Crank and G. Park, Academic Press, New York, 1968, Chapter 5, pp. 140–162.Google Scholar
  16. 16.
    K. Ueberreiter, in G. Park, Academic Press, New York, 1968, Chapter 5 Ref. 15, pp. 219–257.Google Scholar
  17. 17.
    K. Ueberreiter and F. Asmussen, J. Polym. Sci. 52, 75 (1957); 57, 187 (1962); 57, 199 (1962).Google Scholar
  18. 18.
    J. Greeneich, J. Electrochem. Soc. 122, 970 (1975).Google Scholar
  19. 19.
    L. Lapcik and L. Valko, J. Polym. Sci. Part A-2, 9, 633 (1971).Google Scholar
  20. 20.
    S. Ju, H. Lu, J. Duda, and J. Vrentas, J. Appl. Polym. Sci. 26, 3735 (1981).Google Scholar
  21. 21.
    O. Aboul-Nasr and R. Huang, J. Appl. Polym. Sci. 23, 1819 (1979).Google Scholar
  22. 22.
    J. Vrentas, H. Lu, and J. Duda, J. Appl. Polym. Sci. 25, 1793 (1980).Google Scholar
  23. 23.
    M. Kumbar, J. Macromol. Sci. A5, 1301 (1971); L. Rebenfeld, J. macromol. sci., Rev. macromol. ehem. C15, 279-393 (1976).Google Scholar
  24. 24.
    Y. Tu and A. Ouano, IBM J. Res. Dev. 23, 131 (1977).Google Scholar
  25. 25.
    E. Gipstein, A. Ouano, D. Johnson, and O. Need, IBM J. Res. Dev. 21, 143 (1977); Polym. Eng. Sci. 17, 396 (1977).Google Scholar
  26. 26.
    M. Hatzakis, C. Ting, and N. Viswanathan, Proc. Electron Ion Beam Sixth Conf., San Francisco, Electrochemical Society, May 1974, p. 542.Google Scholar
  27. 27.
    A. Ouano, Polym. Eng. Sci. 18, 306 (1978).Google Scholar
  28. 28.
    J. Greeneich, J. Electrochem. Soc. 121, 1669 (1974).Google Scholar
  29. 29.
    U.S. Patent 3,987,215 (1977), IBM.Google Scholar
  30. 30.
    U.S. Patent 4,078,098 (1978), IBM.Google Scholar
  31. 31.
    K. Harada, T. Tamamura, and O. Kogure, J. Electrochem. Soc. 129, 2576 (1982).Google Scholar
  32. 32.
    D. Kyser and R. Pyle, IBM J. Res. Dev. 24, 426 (1980).Google Scholar
  33. 33.
    F. Billmeyer, Textbook of Polymer Science, Wiley, New York, 1971, pp. 33, 74, 84.Google Scholar
  34. 34.
    M. Bowden, L. Thompson, and J. Ballantyne, J. Vac. Sci. Technol. 12, 1294 (1975).Google Scholar
  35. 35.
    K. Murase, M. Kakuchi, and S. Sugarwara, Proc. Intl. Conf. on Microlithography, Paris, 1977, p. 265; J. Electrochem. Soc. 126, 1831 (1979); 127, 491 (1980).Google Scholar
  36. 36.
    G. Chui, E. Gipstein, W. Moreau, and O. Need, J. Appl. Polym. Sci. 21, 3477 (1977); U.S. Patent 3,916,036 (1976), IBM.Google Scholar
  37. 37.
    R. Kambour, E. Romagosa, and C. Gruner, Macromolecules, 5, 335 (1972).Google Scholar
  38. 38.
    W. Moreau, Opt. Eng. 22, 181 (1983).Google Scholar
  39. 39.
    M. Gazard, C. Duchnese, J. Dubois, and A. Chapiro, Polym. Eng. Sci. 20, 1069 (1980).Google Scholar
  40. 40.
    G. Geuskens, E. Hellinck, and C. David, Eur. Polym. J. 7, 87 (1971), Makromol. Chem. 160, 135 (1972), 160, 347 (1971).Google Scholar
  41. 41.
    E. Thompson, Polym. Lett. 3, 675 (1965).Google Scholar
  42. 42.
    H. Ku and L. Scala, J. Electrochem. Soc. 116, 980 (1969).Google Scholar
  43. 43.
    C. Ting, in Record of the 11th Symposium on Electron, Ion and Laser Beam Technology, edited by R. Thornley, San Francisco Press, 1971, p. 337.Google Scholar
  44. 44.
    U.S. Patent 3,996,393 (1976), IBM.Google Scholar
  45. 45.
    R. Harris, J. Electrochem. Soc. 120, 272 (1973).Google Scholar
  46. 46.
    M. Atoda, M. Komuro, and H. Kawakatsu, J. Appl Phys. 50, 3707 (1979).Google Scholar
  47. 47.
    French Patent 2,304,933 (1979), Thompson CSF; Chem. Abstr. 91, 220371 (1979).Google Scholar
  48. 48.
    Japanese Patent 79,41719 (1979), Cho LSI; Chem. Abstr. 91, 999536 (1979).Google Scholar
  49. 49.
    M. Bowden, J. Polym. Sci. 12, 499 (1975).Google Scholar
  50. 50.
    M. Kakuchi, S. Sugawara, K. Murase, and K. Matsuyama, J. Electrochem. Soc. 124, 1648 (1977).Google Scholar
  51. 51.
    U.S. Patent 3,898,350 (1977), IBM.Google Scholar
  52. 52.
    Japanese Patent 77,93493 (1977), AGIST, Chem. Abstr. 86, 198006 (1978); 88, 56981 (1979).Google Scholar
  53. 53.
    U.S. Patent 3,934,057 (1976), IBM.Google Scholar
  54. 54.
    L. Gavens, D. Hess, B. Wu, A. Bell, and D. Soong, J. Vac. Sci. Technol. B1, 481 (1983).Google Scholar
  55. 55.
    R. Hawryluk, J. Vac. Sci. Technol. 19, 1 (1981), and references therein.Google Scholar
  56. 56.
    F. Jones and J. Paraszczak, IEEE Trans. Electron Devices ED-28, 1544 (1981).Google Scholar
  57. 57.
    K. Heinrich, H. Betz, A. Heuberger, and S. Pongratz, J. Vac. Sci. Technol. 19, 1254 (1981).Google Scholar
  58. 58.
    L. Karapiperes, I. Adesida, C. Lee, and E. Wolf, J. Vac. Sci. Technol. 19, 1259 (1981).Google Scholar
  59. 59.
    H. Santini and N. Viswanathan, Proceedings of Microelectronics Seminar, Interface 82, Kodak Publication G-136, Eastman Kodak Co., Rochester, New York, 1982, p. 47.Google Scholar
  60. 60.
    SAMPLE (Simulation and Modeling Profiles in Lithography and Etching, Department of Electrical Engineering, University of California, Berkeley, California; P. Jain, A. Neureuther, and W. Oldham, IEEE Trans. Electron Devices ED-28, 1410 (1981).Google Scholar
  61. 61.
    M. Rosenfield, A. Neureuther, and C. Ting, J. Vac. Sci. Technol. 19, 1242 (1981).Google Scholar
  62. 62.
    M. Ballauf and B. Wolf, Macromolecules 14, 654 (1981).Google Scholar
  63. 63.
    N. Viswanathan, J. Polym. Sci., Polym. Chem. Ed. 14, 1553 (1976).Google Scholar
  64. 64.
    A. Ouano, D. Johnson, B. Dawson, and L. Pederson, J. of Polym. Sci. 14, 701 (1976).Google Scholar
  65. 65.
    Japanese Patent 80,105,244, Matsushita.Google Scholar
  66. 66.
    US. Patent 4,051,271 (1981), AGIST.Google Scholar
  67. 67.
    V. Sharma, R. Pethrick, and S. Affrossman, Polymer, 23, 1732 (1982).Google Scholar
  68. 68.
    Polymer Handbook, edited by J. Brandup and E. Immergut, Wiley, New York, 1975, Chapter 4.Google Scholar
  69. 69.
    J. Helbert, B. Wagner, P. Caplan and E. Poindexter, J. Appl. Polym. Sci. 19, 1201 (1975).Google Scholar
  70. 70.
    A. Ouano, Polym. Eng. Sci. 18, 306 (1978).Google Scholar
  71. 71.
    W. Moreau, W. Mover, I. Merritt, M. Hatzakis, L. Pederson, and D. Johnson, J. Vac. Sci. Technol. 16, 1989 (1979); U.S. Patent 4,121,935 (1981), IBM.Google Scholar
  72. 72.
    A. Charlesby and R. Blackburn, Nature, 210, 1036 (1966).Google Scholar
  73. 73.
    W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. 1970, p. 459.Google Scholar
  74. 74.
    E. Gipstein, W. Moreau, and O. Need, J. Electrochem. Soc. 123, 1105 (1976).Google Scholar
  75. 75.
    I. Haller, R. Feder, M. Hatzakis, and E. Spiller, J. Electrochem. Soc. 126, 154 (1979); U.S. Patent 3,984,582 (1979).Google Scholar
  76. 76.
    U.S. Patent 4,193,797 (1981), DuPont.Google Scholar
  77. 77.
    U.S. Patent 3,931,435 (1977), IBM.Google Scholar
  78. 78.
    A. Chapiro, Radiation Chemistry of Polymeric Systems, Wiley, New York, 1962, p. 546.Google Scholar
  79. 79.
    U.S. Patent 3,934,057 (1976), IBM.Google Scholar
  80. 80.
    U.S. Patent 4,024,293 (1980), IBM.Google Scholar
  81. 81.
    M. Hatzakis, Solid State Technol. August 1981, p. 74.Google Scholar
  82. 82.
    Japanese Patent 80,144247; Chem. Abstr. 94, 163479, (1980).Google Scholar
  83. 83.
    Japanese Patent 79,143232; Chem. Abstr. 92, 155909 (1979).Google Scholar
  84. 84.
    U.S. Patents 3,981,985 (1977); 4,061,382 (1980), Phillips.Google Scholar
  85. 85.
    Japanese Patent 79,116227; Chem. Abstr. 92, 320281 (1979).Google Scholar
  86. 86.
    J. Greeneich, J. Appl. Phys. 45, 5264 (1974).Google Scholar
  87. 87.
    D. Kyser and N. Viswanathan, J. Vac. Sci. Technol. 12, 1305 (1975).Google Scholar
  88. 88.
    M. Kaplan and D. Meyerhofer, RCA Rev. 40, 166 (1979); Polym. Eng. Sci. 20, 1973 (1980).Google Scholar
  89. 89.
    M. Bowden, L. Thompson, S. Farenholtz, and E. Doerries, J. Electrochem. Soc. 128, 1304 (1981); U.S. Patent 4,289,845 (1981), Bell.Google Scholar
  90. 90.
    J. Shaw, M. Frisch, and F. Dill, IBM J. Res. Dev. 21, 219 (1977).Google Scholar
  91. 91.
    J. Lyerla and J. Pacansky, IBM J. Res. Dev. 23, 42 (1979).Google Scholar
  92. 92.
    W. Oldham, IEEE Electron Device Lett. EDL-1, 217 (1980).Google Scholar
  93. 93.
    D. Meyerhofer, IEEE Trans. Electron Devices ED-27, 921 (1980).Google Scholar
  94. 94.
    S. Fujimori, J. Appl. Phys. 50, 621 (1979).Google Scholar
  95. 95.
    F. Dill, A. Neureuther, J. Tuttle, and E. Walker, IEEE Trans. Electron Devices ED-22, 456 (1975).Google Scholar
  96. 96.
    F. Dill and J. Shaw, IBM J. Res. Dev. 21, 210 (1977).Google Scholar
  97. 97.
    D. Ilten and R. Sutton, J. Electrochem. Soc. 119, 539 (1972).Google Scholar
  98. 98.
    D. Ilten, J. Electrochem. Soc. 119, 537 (1972).Google Scholar
  99. 99.
    J. Lane, Abstracts of 1983 Conference on Ion, Electron and Photon Beams, Los Angeles, California, F-3.Google Scholar
  100. 100.
    Y. Wada, K. Mochiji, and N. Obayashi. J. Electrochem. Soc. 130, 187 (1983).Google Scholar
  101. 101.
    Japanese Patent 81,92536, Fijitsu; Chem. Abstr., 96, 60866d (1981).Google Scholar
  102. 102.
    H. Hiroaka and A. Gutierrez, J. Electrochem. Soc. 126, 860 (1979).Google Scholar
  103. 103.
    R. Morgan and C. Pollard, Electron. Lett. 1B, 1038 (1982).Google Scholar
  104. 104.
    S. Farenholtz, J. Vac. Sci. Technol. 19, 1111 (1981), U.S. Patent 4,173,470 (1979), Bell.Google Scholar
  105. 105.
    U.S. Patent 4,379,826 (1983), IBM.Google Scholar
  106. 106.
    F. Dill, W. Hornberger, P. Hauge, and J. Shaw, IEEE Trans. Electron Devices ED-22, 445 (1975).Google Scholar
  107. 107.
    J. Perez and A. Tobar, J. Photochem. 19, 133 (1982).Google Scholar
  108. 108.
    R. Bartolini, Appl. Opt. 11, 1275 (1972).Google Scholar
  109. 109.
    S. Austin and F. Stone, Appl Opt. 15, 1071 (1976).Google Scholar
  110. 110.
    S. Norman and M. Singh, Appl Opt. 14, 818 (1975).Google Scholar
  111. 111.
    K. Konnerth and F. Dill, IEEE Trans. Electron Devices ED-22, 452 (1975).Google Scholar
  112. 112.
    D. Novotony, Solid State Technol. March 1981, p. 83.Google Scholar
  113. 113.
    C. Livanos, A. Katzir, J. Shellan, and A. Yarw, Appl. Opt. 16, 1633 (1977).Google Scholar
  114. 114.
    R. Bartolini, Appl. Opt. 13, 129 (1974).Google Scholar
  115. 115.
    J. Shaw and M. Hatzakis, IEEE Trans. Electron Devices ED-25, 425 (1978).Google Scholar
  116. 116.
    S. Middelhoek, IBM J. Res. Dev. 14 117 (1970).Google Scholar
  117. 117.
    D. Windmann and H. Bender, IEEE Trans. Electron Devices ED-22, 467 (1975).Google Scholar
  118. 118.
    T. Chang, C. Codella, and R. Lange, IEEE Trans. Electron Devices ED-28, 1428 (1981).Google Scholar
  119. 119.
    P. Frasch and K. Saremski, IBM J. Res. Dev. 26, 561 (1982).Google Scholar
  120. 120.
    W. Moreau and W. Moyer, IBM Tech. Discl. Bull. 23, 2304 (1980).Google Scholar
  121. 121.
    F. Dill, IEEE Trans. Electron Devices ED-22, 440 (1975).Google Scholar
  122. 122.
    D. Leers, Solid State Technol. March 1981, p. 90.Google Scholar
  123. 123.
    T. Chang, C. Ting, and D. Kyser, Solid State Technol. May, 1982, p. 60.Google Scholar
  124. 124.
    M. Narasimham, IEEE Trans. Electron Devices ED-22, 478 (1975).Google Scholar
  125. 125.
    D. Hofer, C. Willson, A. Neureuther, and M. Halsey, SPIE Proc. 334, 196 (1982).Google Scholar
  126. 126.
    U.S. Patent 3,639,184 (1972), IBM.Google Scholar
  127. 127.
    U.S. Patent 4,173,479 (1978), Bell.Google Scholar
  128. 128.
    U.S. Patent 4,266,001 (1982), American Hoechst.Google Scholar
  129. 129.
    U.S. Patent 4,174,222 (1982), Tokyo Ohko.Google Scholar
  130. 130.
    U.S. Patent 4,115,129 (1978), IBM.Google Scholar
  131. 131.
    A. Ouano, Am. Chem. Soc. Org. Coat. Prepr. 45, 431 (1981).Google Scholar
  132. 132.
    Japanese Patent 80,88048; Chem. Abstr. 94, 22984 (1980).Google Scholar
  133. 133.
    T. Batchhelder and I. Pratt, Solid State Technol. August 983, p. 211.Google Scholar
  134. 134.
    R. Conley and J. Bieron, J. Appl. Polym. Sci. 1, 171 (1963).Google Scholar
  135. 135.
    T. Gupta, Eur. Polym. J. 17, 1127 (1981).Google Scholar
  136. 136.
    E. Walker, IEEE Trans. Electron Devices ED-22, 464 (1975).Google Scholar
  137. 137.
    W. Tsang, Appl. Opt. 16, 1918 (1977).Google Scholar
  138. 138.
    T. Shaughnessy and R. Ruddell, Semicond. Int. May 1980, p. 79.Google Scholar
  139. 139.
    W. Deforest, Photoresist Materials and Processes, McGraw Hill, New York 1975, p. 54.Google Scholar
  140. 140.
    M. Dinaburg, Photosensitive Diazo Compounds, Focal Press, New York, 1964, p. 77.Google Scholar
  141. 141.
    U.S. Patent 3,961,000 (1976), RCA.Google Scholar
  142. 142.
    Brazilian Patent 78,07666, IBM; Chem. Abstr. 93, 85225 (1978); U.S. Patent 4,359,520 (1982), IBM.Google Scholar
  143. 143.
    R. Halverson, W. MacIntyre, and W. Motsiff, IBM J. Res. Dev. 26, 590 (1981), IBM.Google Scholar
  144. 144.
    L. Harriman, Solid State Technol. June 1983, p. 155.Google Scholar
  145. 145.
    J. Barrie, in Diffusion in Polymers, edited by J. Crank and G. Park, Academic Press, New York, 1968, Chapter 8.Google Scholar
  146. 146.
    U.S. Patent 3,961,101 (1976), RCA.Google Scholar
  147. 147.
    P. Hershey, Kodak Microelectronics Seminar G-136, 33 (1982).Google Scholar
  148. 148.
    E. Fredericks, IBM Tech. Discl. Bull. 20, 2317 (1977).Google Scholar
  149. 149.
    U.S. Patent 3,402,044 (1968), Shipley.Google Scholar
  150. 150.
    U.S. Patent 3,649,283 (1972), Shipley.Google Scholar
  151. 151.
    U.S. Patent 3,859,099 (1975), Kodak.Google Scholar
  152. 152.
    U.S. Patent 4,379,830 (1983), Polychrome.Google Scholar
  153. 153.
    Japanese Patent 80,43537; Chem. Abstr. 93, 141023 (1980).Google Scholar
  154. 154.
    U.S. Patent 4,253,888 (1982), Kodak.Google Scholar
  155. 155.
    S. Grigorovich, Zh. Prikl. Khim. (Leningrad) 48, 1307 (1975); Chem. Abstr. 84, 128719t (1975).Google Scholar
  156. 156.
    German Patent 2,447,225 (1976), IBM; Chem. Abstr. 85, 102423m (1976).Google Scholar
  157. 157.
    Japanese Patent 75,158,280 Tokyo Shibaura; Chem. Abstr. 85, 12374t (1975).Google Scholar
  158. 158.
    Japanese Patent 81,162746, Fujitsu; Chem. Abstr. 97, 31276 (1981).Google Scholar
  159. 159.
    U.S. Patent 4,141,733 (1979), Kodak.Google Scholar
  160. 160.
    Russian Patent 608,850; Chem. Abstr. 89, 120922 (1978).Google Scholar
  161. 161.
    Russian patent 691,794; Chem. Abstr. 92, 102324a (1980).Google Scholar
  162. 162.
    U.S. Patent 3,868,254 (1975), GAF.Google Scholar
  163. 163.
    J. Shaw and M. Hatzakis, J. Electrochem. Soc. 126, 2026 (1979).Google Scholar
  164. 164.
    N. Atoda and H. Hawakatsu, J. Electrochem. Soc. 123, 1519 (1976).Google Scholar
  165. 165.
    Japanese Patent 78,135621, Hitachi; Chem. Abstr. 90, 130686 (1978).Google Scholar
  166. 166.
    A. Reiser and E. Pitts, J. Photogr. Sci. 29, 187 (1981).Google Scholar
  167. 167.
    T. Kobayashi and E. Arai, J. Appl. Phys. 52, 4785 (1981).Google Scholar
  168. 168.
    Y. Taniguchi, Y. Hatano, H. Shiraishi, S. Horigome, S. Nonogaki, and K. Naroaka, Jpn. J. Appl. Phys. 18, 1143 (1979).Google Scholar
  169. 169.
    A. Reiser and E. Pitts, Photogr. Sci. Eng. 20, 225 (1976).Google Scholar
  170. 170.
    W. Moreau, SPE RETEC, Ellenville, New York, Photopolymer Conference Proceedings, October 1970, p. 143.Google Scholar
  171. 171.
    Y. Ohnishi, M. Itoh, K. Mizuno, H. Gokan, and S. Fujewara, J. Vac. Sci. Technol. 19, 1141 (1981).Google Scholar
  172. 172.
    D. Smith, Photogr. Sci. Eng. 12, 264 (1968).Google Scholar
  173. 173.
    T. Tada, J. Electrochem. Soc. 129, 1070 (1982).Google Scholar
  174. 174.
    U.S. Patent 4,279,986 (1982), Nippon.Google Scholar
  175. 175.
    Japanese Patent 81,162746; Chem. Abstr. 97, 31276 (1981).Google Scholar
  176. 176.
    Japanese Patent 79, 17104.Google Scholar
  177. 177.
    T. Bullett, J. Adhes. 4, 73 (1972).Google Scholar
  178. 178.
    E. Davidson, SPE RETEC, Ellenville, New York Photopolymer Conference Proceedings, October, 1970, p. 141.Google Scholar
  179. 179.
    P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953, p. 578.Google Scholar
  180. 180.
    Z. Rigbi, J. Appl. Polym. Sci. 12, 242 (1968).Google Scholar
  181. 181.
    N. Taylor and E. Bagley, J. Appl. Polym. Sci. 21, 113 (1977).Google Scholar
  182. 182.
    K. Gandhi and M. Williams, J. Appl. Polym. Sci. 16, 2721 (1972).Google Scholar
  183. 183.
    S. Imamura, T. Tamamura, K. Harada, and S. Sugawara, J. Appl. Polym. Sci. 27, 937 (1982); U.S. Patent 4,286,049 (1982), Nippon.Google Scholar
  184. 184.
    J. Lai, J. Electrochem. Soc. 126, 697 (1979).Google Scholar
  185. 185.
    E. Feit, Polym. Eng. Sci. 20, 1058 (1980); U.S. Patent 4,201,580 (1980), Bell.Google Scholar
  186. 186.
    B. Gong, Y. Ye, H. Gu, and Q. Chang, J. Vac. Sci. Technol. 16, 1980 (1979).Google Scholar
  187. 187.
    German Patent 3,041,261, JSR; Chem. Abstr. 94, 22989 (1980).Google Scholar
  188. 188.
    German Patent 2,817,256, Allied; Chem. Abstr. 90, 195637 (1978).Google Scholar
  189. 189.
    Japanese Patent 80,155353, Tokyo Ohko; Chem. Abstr. 94, 200872.Google Scholar
  190. 190.
    U.S. Patent 4,148,655 (1979), Oji Paper.Google Scholar
  191. 191.
    F. Kaufmann, A. Schroeder, E. Engler, and V. Patel, Appl. Phys. Lett. 36, 423 (1980); 37, 314 (1980), U.S. Patent 4,338,392 (1981), IBM.Google Scholar
  192. 192.
    Japanese Patent 79,140,535; Chem. Abstr. 92, 119732 (1979).Google Scholar
  193. 193.
    Japanese Patent 82,178239, Hitachi; Chem. Abstr. 98, 117127 (1982).Google Scholar
  194. 194.
    C. Tan and J. Rauner, J. Vac. Sci. Technol. 19, 1348 (1981); U.S. Patent 4,289,842 (1982), Kodak.Google Scholar
  195. 195.
    O. Kogure, Jpn. J. Appl. Phys. 21, 206 (1982).Google Scholar
  196. 196.
    East German Patent 179164; Chem. Abstr. 86, 81717 (1978).Google Scholar
  197. 197.
    A. Barraud, Thin Solid Films 85, 77 (1981).Google Scholar
  198. 198.
    R. Kaiser, G. Miller, D. Thomas, and L. Sperling, J. Appl. Polym. Sci. 27, 957 (1982).Google Scholar
  199. 199.
    W. Moreau and P. Schmidt, Electrochem. Soc. Ext. Abstr. 138, 459 (1970).Google Scholar
  200. 200.
    H. Sawarada, J. Macromol. Sci., Rev. Macromol. Chem. C3, 313 (1969).Google Scholar
  201. 201.
    M. Bowden and L. Thompson, Polym. Eng. Sci. 14, 525 (1974).Google Scholar
  202. 202.
    K. Hatada, Polym. Bull. 8, 469 (1982).Google Scholar
  203. 203.
    G. Willson, H. Ito, J. Frecht, and F. Houlihan, Proceedings of 28th IUPAC Macromolecular Symposium, July 1982, International Union of Pure and Applied Chemists, Amherst, Massachusetts, p. 448.Google Scholar
  204. 204.
    H. Raply, G. Duggan, and R. Elliott, Electrochem. Soc. Ext. Abstr. 82-1, 514 (1982)Google Scholar
  205. 205.
    N. Ueno, S. Koniski, K. Tanimoto, and K. Sugita, Jpn. J. Appl. Phys. 20, L709 (1981).Google Scholar
  206. 206.
    R. Srinivasan and V. Mayne-Banton, Appl. Phys. Lett. 41, 576 (1982); B. Garrison and R. Srinivasan, Appl. Phys. Lett. 44, 849 (1984).Google Scholar
  207. 207.
    M. Mitsuya, M. Terao, Y. Taniguchi, T. Kabu, K. Shigematsu, and M. Akayai, J. Appl Phys. 54, 3710 (1983).Google Scholar
  208. 208.
    T. Yamazaki, K. Tanaka, and H. Nakata, J. Electrochem. Soc. 127, 1860 (1980); Jpn. J. Appl. Phys. 21, 1518 (1982).Google Scholar
  209. 209.
    S. Monta, J. Tamano, S. Hattori, and M. Ieda, J. Appl Phys. 51, 3938 (1980).Google Scholar
  210. 210.
    J. Tamano, S. Hattori, M. Ieda, and S. Monta, Plasma Chem. Plasma Process. 1, 261 (1981).Google Scholar
  211. 211.
    H. Hiroaka, Appl. Phys. Lett. 31, 503 (1977).Google Scholar
  212. 212.
    U.S. Patent 4,241,165 (1980), Motorola.Google Scholar
  213. 213.
    U.S. Patent 4,278,753 (1981); 4,292,384 (1981), Horizons.Google Scholar
  214. 214.
    U.S. Patent 4,232,110 (1980), Bell.Google Scholar
  215. 215.
    G. Taylor and T. Wolf, J. Electrochem. Soc. 127, 2668 (1980): G. Taylor, and T. Wolf, Solid State Technol. Feb. 1984, p. 145.Google Scholar
  216. 216.
    G. Taylor, T. Wolf, and J. Moran, J. Vac. Sci. Technol. 19, 82 (1981).Google Scholar
  217. 217.
    G. Taylor, T. Wolf, and M. Goldrick, J. Electrochem. Soc. 128, 361 (1981).Google Scholar
  218. 218.
    U.S. Patent 4,386,152 (1983), Honeywell.Google Scholar
  219. 219.
    M. Tsuda, S. Oekawa, W. Kanai, A. Yokoto, I. Hiijita, J. Uekara, and H. Nakane, J. Vac. Sci. Technol. 19, 259 (1981).Google Scholar
  220. 220.
    M. Tsuda, J. Vac. Sci. Technol. 19, 1351 (1981).Google Scholar
  221. 221.
    M. Issacson and A. Muray, J. Vac. Sci. Technol. 19, 1117 (1981).Google Scholar
  222. 222.
    J. Lane, J. Maldonado, A. Cleland, R. Haelbich, J. Silverman, and J. Warlaumont, J. Vac Sci. Technol. B1, 1072 (1983).Google Scholar
  223. 223.
    N. Samoto, R. Shemizu, H. Hasimoto, I. Adesida, E. Wolf, and S. Namba, J. Vac. Sci. Technol. B1, 1367 (1983).Google Scholar
  224. 224.
    S. Gillespie, IBM J. Res. Dev. 28, 454 (1984).Google Scholar
  225. 225.
    V. Nagawasan and R. Carlson, J. Electrochem. Soc. 131, 1369 (1984).Google Scholar
  226. 226.
    U.S. Patent 4,452,880 (1984), Konishiroku Photo.Google Scholar
  227. 227.
    S. Imamura, T. Tamamura, and O. Kogure, Polym. J. 16, 391 (1984).Google Scholar
  228. 228.
    Japanese Patent 58,04143, Fujitsu; Chem. Abstr. 100, 200947 (1983).Google Scholar
  229. 229.
    PCT Int. Patent Appl. WO. 83,04,320 (1983), RCA; Chem. Abstr. 100, 604 (1983).Google Scholar
  230. 230.
    N. Turro, Modem Molecular Photochemistry, Benjamin, Reading, Massachusetts, 1978, p. 590.Google Scholar
  231. 231.
    R. Cox, N. Clecak, and W. Moreau, Polym. Eng. Sci. 14, 491 (1974).Google Scholar
  232. 232.
    H. Gokan, S. Scho, and Y. Ohnishi, J. Electrochem. Soc. 130, 143 (1983).Google Scholar
  233. 233.
    G. Taylor and T. Wolf, Polym. Eng. Sci. 20, 1087 (1980).Google Scholar
  234. 234.
    Japanese Patent 81,77844; Chem. Abstr. 96, 26852 (1981).Google Scholar
  235. 235.
    J. Moran and G. Taylor, J. Vac. Sci. Technol. 16, 2020 (1979).Google Scholar
  236. 236.
    I. Adesida, J. Chen, L. Rathburn, and E. Wolf, J. Vac. Sci. Technol. 21, 666 (1982).Google Scholar
  237. 237.
    T. Venkatesan, G. Taylor, A. Wagner, B. Wilkens, and D. Barr, J. Vac. Sci. Technol. 19, 1379 (1981).Google Scholar
  238. 238.
    B. Wu, D. Hess, D. Soong, and A. Bell, J. Appl. Phys. 54, 1725 (1983).Google Scholar
  239. 239.
    M. Yamada, S. Hattori, and S. Morita, J. Electrochem. Soc 129, 2598 (1982).Google Scholar
  240. 240.
    M. Yamada, J. Tamano, K. Yoneda, S. Morita, and S. Hattori, Jpn. J. Appl. Phys. 21, 768 (1982); J. Electrochem. Soc. 130, 1962 (1983).Google Scholar
  241. 241.
    H. Hiroaka, J. Electrochem. Soc. 128, 1065 (1981).Google Scholar
  242. 242.
    D. Follett, K. Weiss, J. Moore, A. Steckel, and W. Liu, Electrochem. Soc. Ext. Abstr. 82-2, 321 (1982).Google Scholar
  243. 243.
    T. Yamazaki, K. Tanaka, and H. Nakata, Jpn. J. Appl Phys. 20, 2191 (1981).Google Scholar
  244. 244.
    U.S. Patent 4,307,178 (1981), IBM.Google Scholar
  245. 245.
    Japanese Patent 82,50430; Chem. Abstr. 97, 48231 (1982).Google Scholar
  246. 246.
    P. Holmes and J. Snell, Microelectron. Reliab. 5, 337 (1966).Google Scholar
  247. 247.
    D. Weston and R. Mattox, J. Vac. Sci. Technol. 17, 466 (1980).Google Scholar
  248. 248.
    M. Jun-Ru, S. Kuo-Hsung, E. Wolf, and T. Everhart, J. Vac. Sci. Technol. 19, 1385 (1981).Google Scholar
  249. 249.
    Japanese Patent 77,2259; Chem. Abstr. 87, 193575 (1977).Google Scholar
  250. 250.
    Japanese Patent 77,12235; Chem. Abstr. 88, 82744 (1977).Google Scholar
  251. 251.
    S. Yoshikawa, O. Ochi, and Y. Mizushi, Appl. Phys. Lett. 36, 197 (1980); P. Huggett, Appl. Phys. Lett.. 42, 592 (1983).Google Scholar
  252. 252.
    U.S. Patent 4,307,176 (1981), Hitachi.Google Scholar
  253. 253.
    B. Lin, IEEE Trans. Electron Devices 25, 419 (1978); U.S. Patent 4,142,107 (1979), IBM.Google Scholar
  254. 254.
    U.S. Patent 4,039,379 (1977), IBM.Google Scholar
  255. 255.
    H. Kleinknecht and H. Meier, J. Electrochem. Soc. 125, 798 (1976); J. Electrochem. Soc. 130, 655 (1983).Google Scholar
  256. 256.
    D. Elliott, Solid State Technol. Sept. 1977, p. 66.Google Scholar
  257. 257.
    M. Borovicka, SPE RETEC Photopolymers, Ellenville, New York, 1979, p. 20.Google Scholar
  258. 258.
    A. Johnson, Kodak Microelectronics Seminar, G-136, 60 (1982).Google Scholar
  259. 259.
    D. Kim, W. Oldham, and A. Neureuther, Kodak Microelectronics Seminar, G-136, 100(1982).Google Scholar
  260. 260.
    U.S. Patent 3,935,331; 3,935,332 (1977), RCA.Google Scholar
  261. 261.
    H. Keller, Solid State Technol. June 1978, p. 45.Google Scholar
  262. 262.
    L. Rebenfeld, P. Makarewicz, H. Weigmann, and G. Wilkes, J. Macromol. Sci., Rev. Macromol Chem. C15, 279 (1976).Google Scholar
  263. 263.
    F. Sacher, J. Polym. Sci., Polym. Lett. 21, 111 (1983).Google Scholar
  264. 264.
    S. Bergeron and B. Duncan, Solid State Technol. August 1982, p. 98, and references therein; G. Box and J. Hunter, Ann. Math. Stat. 23, 195 (1957).Google Scholar
  265. 265.
    M. Geis, J. Randall, T. Deutsch, P. DeGraff, K. Krahn, and L. Stern, Appl. Phys. Lett. 43, 74 (1983).Google Scholar
  266. 266.
    H. Deckman and J. Dunsmuir, J. Vac. Sci. Technol. B1, 1166 (1983).Google Scholar
  267. 267.
    A. McCullough, SPE RETEC Photopolymers, Ellenville, New York, 1982.Google Scholar
  268. 268.
    U.S. Patent 4,439,516 (1984), Shipley.Google Scholar
  269. 269.
    G. Stevens, Microphotography, Wiley, New York 1966, p. 189.Google Scholar
  270. 270.
    G. Pannetier and P. Souchay, Chemical Kinetics, Elsevier, New York, 1967, p. 150.Google Scholar
  271. 271.
    G. Taylor, L. Stillwagon, and T. Venkatesan, J. Electrochem. Soc. 131, 1658 (1984).Google Scholar
  272. 272.
    U.S. Patent 4,464,455 (1984), Fujitsu Ltd.Google Scholar
  273. 273.
    U.S. Patents 4,414,059 and 4,417,948 (1984), IBM.Google Scholar
  274. 274.
    Z. Pelzbauer and R. Wagner, J. Appl. Polym. Sci. 29, 1427 (1984).Google Scholar
  275. 275.
    Japanese Patent 59,12,433; Chem. Abstr. 102, 165450 (1984).Google Scholar
  276. 276.
    Japanese Patent 57,202,536; Chem. Abstr. 100, 112257 (1982).Google Scholar
  277. 277.
    Japanese Patent 57,202,532; Chem. Abstr. 100, 148509 (1982).Google Scholar
  278. 278.
    Japanese Patent 57,211,143; Chem. Abstr. 100, 12988 (1982).Google Scholar
  279. 279.
    Japanese Patent 57,168,246; Chem. Abstr. 100, 430474 (1982).Google Scholar
  280. 280.
    Japanese Patent 59,02,042; Chem. Abstr. 102, 31147 (1984).Google Scholar
  281. 281.
    Japanese Patent 59,02,037; Chem. Abstr. 102, 46313 (1984).Google Scholar
  282. 282.
    German Patent DE 3,315,395; Chem. Abstr. 101, 129934 (1983).Google Scholar
  283. 283.
    W. Hinsberg and M. Guiterrez, SPIE Advances in Resist Technology, 469, 57 (1984).Google Scholar
  284. 284.
    U.S. Patent 4,468,447 (1984), Tokyo Ohko.Google Scholar
  285. 285.
    M. Watts, J. Vac. Sci. Technol. B3, 434 (1985); U.S. Patent 4,465,768 (1984).Google Scholar
  286. 286.
    W. Flack, J. Electrochem. Soc. 131, 2200 (1984).Google Scholar
  287. 287.
    V. Marriott, SPIE Advances in Resist Processing 469, 65 (1984).Google Scholar
  288. 288.
    M. Hori, Plasma Chem. Plasma Process. 4, 119 (1984).Google Scholar
  289. 289.
    D. Dimter and M. Hanson, SPIE Proc. on Optical Lithography 470, 203 (1984).Google Scholar
  290. 290.
    W. Bonivert, Plat. Surf. Finish. 71, 58 (1984).Google Scholar
  291. 291.
    M. Tsuda, S. Oekawa, M. Yabuta, A. Yakota, H. Nakane, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1984, p. 371.Google Scholar
  292. 292.
    D. Fauval and S. Gourrier, in Microcircuit Engineering, edited by J. Cleaver, H. Ahmed, and G. Jones, Academic Press, New York, 1984, p. 371.Google Scholar
  293. 293.
    G. Koren and J. Yeh, J. Appl. Phys. 56, 2120 (1984).Google Scholar
  294. 294.
    U.S. Patent 4,015,986 (1977), IBM.Google Scholar
  295. 295.
    U.S. Patent 4,462,860 (1984), Bell.Google Scholar
  296. 296.
    U.S. Patent 4,464,461 (1984), Kodak.Google Scholar
  297. 297.
    Japanese Patent 59,84,426; Chem. Abstr. 101, 161274 (1984).Google Scholar
  298. 298.
    Anonymous, Circuits Manufacturing, November 1974, p. 20.Google Scholar
  299. 299.
    Japanese Patent 58,108,529; Chem. Abstr. 101, 141083 (1983).Google Scholar
  300. 300.
    R. Srinivasan and B. Braren, J. Polym. Sci. 22, 2601 (1984).Google Scholar
  301. 301.
    J. Andrew, J. Appl. Phys. 43, 717 (1983).Google Scholar
  302. 302.
    M. Tsuda, S. Oekawa, M. Yabuta, A. Yakota, and H. Nakane, Jpn. J. Appl Phys. 23, 259 (1984).Google Scholar
  303. 303.
    T. Pampalone, M. Hannifan, S. Jain, and C. Krieger, J. Electrochem. Soc. 131, 2670 (1984).Google Scholar
  304. 304.
    D. Kim, W. Oldham, and A. Neureuther, IEEE Trans. Electron Devices ED-31, 1730 (1984).Google Scholar
  305. 305.
    U.S. Patent 4,103,073 (1978), DIOS.Google Scholar
  306. 306.
    Anonymous, Indust. Chem. News. November 1985, p. 5.Google Scholar
  307. 307.
    V. Sharma, S. Affrossman, and R. Pethrick, Br. Polym. J. 16, 73 (1984).Google Scholar
  308. 308.
    Japanese Patent 59,119,276, Chem. Abstr. 102, 15135 (1984).Google Scholar
  309. 309.
    Japanese Patent 59,05,245: Chem. Abstr. 102, 15119 (1984).Google Scholar
  310. 310.
    Japanese Patent 59,05,245; Chem. Abstr. 102, 15120 (1984).Google Scholar
  311. 311.
    Japanese Patent 59,44,046, Chem. Abstr. 102, 201541 (1984).Google Scholar
  312. 312.
    Japanese Patent 58,09,143; Chem. Abstr. 101, 201527 (1983).Google Scholar
  313. 313.
    East German Patent 211,192 (1984), Chem. Abstr. 102, 219864 (1984).Google Scholar
  314. 314.
    Japanese Patent 59,24,847; Chem. Abstr. 102, 219845 (1984).Google Scholar
  315. 315.
    Japanese Patent 58,15,0949; Chem. Abstr. 102, 181997 (1984).Google Scholar
  316. 316.
    Japanese Patent 59,925,32; Chem. Abstr. 102, 238180 (1984).Google Scholar
  317. 317.
    B. Grant, N. Clecak, R. Twieg, and G. Wilson, IEEE Trans. Electron Devices ED-28, 1300 (1981).Google Scholar
  318. 318.
    U.S. Patent 4,359,820 (1982), IBM.Google Scholar
  319. 319.
    M. Tsuda, S. Oekawa, M. Yabuta, A. Yakota, H. Nakane, K. Yamashito, K. Gano, and S. Namba, J. Vac. Sci. Technol. B3, 481 (1985).Google Scholar
  320. 320.
    N. Eib, J. Vac. Sci. Technol. B3, 425 (1985).Google Scholar
  321. 321.
    L. Hauchlan, K. Sautter, and T. Batchelder, Solid State Technol., April 1985, p. 333.Google Scholar
  322. 322.
    P. Rissmann and G. Owen, J. Vac. Sci. Technol. B3, 159 (1985).Google Scholar
  323. 323.
    C. Dix, P. Flavin, P. Hendy, and H. Jones, J. Vac. Sci. Technol. B3, 131 (1985).Google Scholar
  324. 324.
    Japanese Patent 59,125,729; Chem. Abstr. 102, 15153 (1985).Google Scholar
  325. 325.
    Japanese Patent 59,125,729; Chem. Abstr. 102, 15153 (1985).Google Scholar
  326. 326.
    Japanese Patent 59,62,850; Chem. Abstr. 102, 15127 (1985).Google Scholar
  327. 327.
    Japanese Patent 59,155,836; Chem. Abstr. 102, 36776 (1985).Google Scholar
  328. 328.
    F. Rodriguez, P. Krasciky, and R. Groele, Solid State Technol. May 1985, p. 125.Google Scholar
  329. 329.
    D. Henderson, J. White, H. Craighead, and I. Adesida, Appl. Phys. Lett. 46, 900 (1985).Google Scholar
  330. 330.
    G. Gorodetsky, T. Kazyaka, R. Melcher, and R. Srinivasan, Appl. Phys. Lett. 46, 828 (1985).Google Scholar
  331. 331.
    Japanese Patent 59,180,545; Chem. Abstr. 102, 53980 (1985).Google Scholar
  332. 332.
    Japanese Patent 59,165,952; Chem. Abstr. 102, 87659 (1985).Google Scholar
  333. 333.
    British Patent 2,139,777; Chem. Abstr. 102, 876668 (1985).Google Scholar
  334. 334.
    Japanese Patent 50,176,743; Chem. Abstr. 102, 87661 (1985).Google Scholar
  335. 335.
    Japanese Patent 59,72,441; Chem. Abstr. 102, 123107 (1985).Google Scholar
  336. 336.
    Japanese Patent 59,182,444; Chem. Abstr. 102, 123112 (1985).Google Scholar
  337. 337.
    Japanese Patent 59,29,853; Chem. Abstr. 102, 36767 (1985).Google Scholar
  338. 338.
    Anonymous, Semicond. Int. May 1985, p. 30.Google Scholar
  339. 339.
    U.S. Patent 4,464,455 (1985), Fujitsu.Google Scholar
  340. 340.
    V. Marion, SPIE Proc. on Optical Microlithography 394, 194 (1983).Google Scholar
  341. 341.
    K. Sogo, Y. Tanaka, and K. Uchiho, Kodak Microelectronics Seminar G130, 44, (1980).Google Scholar
  342. 342.
    M. Bowden and L. Thompson, Polym. Eng. Sci. 14, 525 (1974).Google Scholar
  343. 343.
    M. Kato and H. Nakanse, Photogr. Sci. Eng. 23, 209 (1984).Google Scholar
  344. 344.
    U.S. Patent 4,103,073 (1985), Dion.Google Scholar
  345. 345.
    U.S. Patent 4,530,895 (1985), Hoechst.Google Scholar
  346. 346.
    C. Mack, SPIE Proc. on Optical Microlithography 538, 207 (1985).Google Scholar
  347. 347.
    U.S. Patent 4,535,054 (1985), Hughes.Google Scholar
  348. 348.
    H. Fuchs and J. Petermann, J. Appl. Phys. 58, 1056 (1985).Google Scholar
  349. 349.
    U.S. Patent 4,506,005 (1985), GCA.Google Scholar
  350. 350.
    T. Matsuzawa, T. Ito, and M. Tanuma, IEEE Trans. Electron Devices ED-32, 1781 (1985).Google Scholar
  351. 351.
    W. Waldo, Semicond. Int. October 1985, p. 116.Google Scholar
  352. 352.
    H. Yamashita and Y. Todokoro, J. Vac. Sci. Technol. B3, 1004 (1985).Google Scholar
  353. 353.
    J. Peterson and M. Stan, Microelectron. Manuf. Test. January 1986, p. 23.Google Scholar
  354. 354.
    F. Sebillote, A. Weill, and P. Paniez, Macromol. Chem. 186, 1695 (1985).Google Scholar
  355. 355.
    German Patent 3,346,979 (1985), Merck; Chem. Abstr. 103, 113376 (1985).Google Scholar
  356. 356.
    M. Watts and R. Hannifan, SPIE Opt. Eng. 539, 21 (1985).Google Scholar
  357. 357.
    M. Watts, J. Vac. Sci. Technol. B3, 434 (1985).Google Scholar
  358. 358.
    European Patent Appl. 129,106 (1985), Allied; Chem. Abstr. 102, 22949 (1985).Google Scholar
  359. 359.
    W. Hinsberg, C. Willson, and K. Kanazawa, SPIE Opt. Eng. 539, 6 (1985).Google Scholar
  360. 360.
    Japanese Patent 6028881, Sumimoto; Chem. Abstr. 103, 75809 (1985).Google Scholar
  361. 361.
    F. Rodriguez, R. Groele, and P. Krasicky, SPIE Opt. Eng. 539, 14 (1985).Google Scholar
  362. 362.
    D. Soong, SPIE Opt. Eng. 539, 2 (1985).Google Scholar
  363. 363.
    M. Tsuda, S. Oikawa, M. Yabuta, A. Yakota, H. Nakane, K. Yamashita, K. Gamo, and S. Namba, J. Vac. Sci. Technol. B3, 481 (1985).Google Scholar
  364. 364.
    A. Muray, J. Vac. Sci. Technol. B3, 1773 (1985).Google Scholar
  365. 365.
    U.S. Patent 4,481,279 (1984), Fujitsu.Google Scholar
  366. 366.
    J. Branon, J. Lankard, A. Baise, F. Bums, and J. Kaufman, J. Appl. Phys. 58, 2036 (1985).Google Scholar
  367. 367.
    R. Srinivasan and S. Lazare, Polymer 26, 1247 (1985).Google Scholar
  368. 368.
    H. Yamashita, and Y. Todokoro, Electron. Lett. 21, 646 (1985).Google Scholar
  369. 369.
    U.S. Patent 4,497,891 (1985), IBM.Google Scholar
  370. 370.
    S. Babu and V. Srinivasan, SPIE Advances in Resist Technology 539, 36 (1985).Google Scholar
  371. 371.
    L. Thomas and J. Windle, Polymer 23, 529 (1982).Google Scholar
  372. 372.
    U.S. Patent 4,552,833 (1985), IBM.Google Scholar
  373. 373.
    S. MacDonald, H. Ito, H. Hiroaka, and C. Willson, SPE RETEC Photopolymers, Ellenville, New York, 1985, p. 177.Google Scholar
  374. 374.
    L. Stillwagon, P. Silverman, and G. Taylor, SPE RETEC Photopolymers, Ellenville, New York, 1985, p. 87.Google Scholar
  375. 375.
    U.S. Patent 4,500,628 (1985), AT&T.Google Scholar
  376. 376.
    M. Flannagan and R. Wake, SPIE Resist Technol. 539, 45 (1985).Google Scholar
  377. 377.
    G. Bendikt, SPIE Resist Technol. 539, 242 (1985).Google Scholar
  378. 378.
    U.S. Patent 4,587,205 (1986), USA.Google Scholar
  379. 379.
    V. Starov, J. Imag. Technol. 30, 74 (1986).Google Scholar
  380. 380.
    U. S. Patent 4,587,203 (1986), Hughes.Google Scholar
  381. 381.
    U.S. Patent 4,551,418 (1985), IBM.Google Scholar
  382. 382.
    T. Ishu, Appl. Phys. Lett. 47, 123 (1985).Google Scholar
  383. 383.
    E. Weber and R. Moore, Solid State Technol. May 1979, p. 61.Google Scholar
  384. 384.
    M. Hatzakis, J. Vac. Sci. Technol. 12, 1276 (1975).Google Scholar
  385. 385.
    A. Barraud, C. Rosilio, and A. Ruandel-Texier, J. Vac. Sci. Technol. 16, 2003 (1979).Google Scholar
  386. 386.
    S. Grindle and E. Pavelchek, Test Meas. World May 1986, p. 102.Google Scholar
  387. 387.
    J. Freenet, F. Bouchard, F. Houlihan, B. Kryczka, E. Eichler, N. Clecak, and C. Willson, J. Imag. Sci., 30, 59 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wayne M. Moreau
    • 1
  1. 1.General Technology DivisionInternational Business Machines CorporationNew YorkUSA

Personalised recommendations