Skip to main content

Is a New and General Theory of Evolution Emerging?

  • Chapter

Part of the Life Science Monographs book series (LSMO)

Abstract

The “modern synthetic” view of evolution has broken down, at least as an exclusive proposition, on both of its fundamental claims: (1) “extrapolationism” (gradual substitution of different alleles in many genes as the exclusive process underlying all evolutionary change) and (2) nearly exclusive reliance on selection leading to adaptation. Evolution is a hierarchical process with complementary, but different modes of change at its three large-scale levels: (a) variation within populations, (b) speciation, and (c) very long-term macroevolutionary trends. Speciation is not always an extension of gradual, adaptive allelic substitution, but may represent, as Goldschmidt argued, a different style of genetic change—rapid reorganization of the genome, perhaps nonadaptive. Macroevolutionary trends do not arise from the gradual, adaptive transformation of populations, but usually from a higher-order selection operating upon groups of species. Individual species generally do not change much after their “instantaneous” (in geological time) origin. These two discontinuities in the evolutionary hierarchy can be called the Goldschmidt break (change in populations is different from speciation) and the Wright break (speciation is different from macroevolutionary trending that translates differential success among different species).

A new and general evolutionary theory will embody this notion of hierarchy and stress a variety of themes either ignored or explicitly rejected by the modern synthesis: e.g., punctuational change at all levels, important nonadaptive change at all levels, control of evolution not only by selection, but equally by constraints of history, development, and architecture—thus restoring to evolutionary theory a concept of organism. —The Editor

Keywords

  • Evolutionary Change
  • Reproductive Isolation
  • Gene Substitution
  • Modern Synthesis
  • Allelic Substitution

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4613-0883-6_7
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4613-0883-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayala, F. J. (1976) Molecular genetics and evolution. In: Molecular Evolution, F. J. Ayala (ed.). Sinauer Associates, Sunderland, Mass., pp. 1–20.

    Google Scholar 

  • Bateson, G. (1978) Mind and Nature. Dutton, New York.

    Google Scholar 

  • Bush, G. L. (1975) Modes of animal speciation. Annu. Rev. Evol. Syst. 6:339–364.

    CrossRef  Google Scholar 

  • Bush, G. L., S. M. Case, A. C. Wilson, and J. L. Patton (1977) Rapid speciation and chromosomal evolution in mammals. Proc. Natl. Acad. Sci. USA 74:3942–3946.

    PubMed  CrossRef  CAS  Google Scholar 

  • Carson, H. L. (1975) The genetics of speciation at the diploid level. Am. Nat. 109:83–92.

    CrossRef  Google Scholar 

  • Carson, H. L. (1978) Chromosomes and species formation. Evolution 32:925–927.

    CrossRef  Google Scholar 

  • Darwin, C. (1859) On the Origin of Species. Murray, London.

    Google Scholar 

  • Darwin, C. (1880) Sir Wyville Thomson and natural selection. Nature 23:32.

    CrossRef  Google Scholar 

  • Dobzhansky, T. (1937) Genetics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Dobzhansky, T. (1951) Genetics and the Origin of Species, 3rd ed. Columbia University Press, New York.

    Google Scholar 

  • Ehrlich, P. R. and P. H. Raven (1969) Differentiation of populations. Science 165:1228–1232.

    PubMed  CrossRef  CAS  Google Scholar 

  • Eldredge, N. (1979) Alternative Approaches to Evolutionary Theory. Carnegie Museum of Pittsburgh, Pittsburgh.

    Google Scholar 

  • Eldredge, N., and S. J. Gould (1972) Punctuated equilibria: An alternative to phyletic gradualism. In: Models in Paleobiology, T. J. M. Schopf (ed). Freeman, Cooper and Co., San Francisco, pp. 82–115.

    Google Scholar 

  • Goldschmidt, R. (1940) The Material Basis of Evolution. Yale University Press, New Haven, Conn.

    Google Scholar 

  • Gould, S. J. (1980a) Is a new and general theory of evolution emerging? Paleobiology 6:119–130.

    Google Scholar 

  • Gould, S. J.(1980b) G. G. Simpson, paleontology and the modern synthesis. In: The Evolutionary Synthesis, E. Mayr and W. B. Privine (eds.). Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Gould, S. J., and E. Eldredge (1977) Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology 3:115–151.

    Google Scholar 

  • Gould, S. J., and R. C. Lewontin (1979) The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist program. Proc. R. Soc. London Ser. B 205:581–598.

    CrossRef  CAS  Google Scholar 

  • Hampé, A. (1959) Contribution à l’étude du développement et de la regulation des déficiences et des excédents dans la patte de l’embryon de poulet. Arch. Anat. Microsc. Morphol. Exp. 48:345–378.

    Google Scholar 

  • King, M. C., and A. C. Wilson (1975) Evolution at two levels in humans and chimpanzees. Science 188:107–116.

    PubMed  CrossRef  CAS  Google Scholar 

  • Koestler, A. (1978) Janus: A Summing Up. Random House, New York.

    Google Scholar 

  • Lewontin, R. C. (1974) The Genetic Basis of Evolutionary Change. Columbia University Press, New York.

    Google Scholar 

  • Lewontin, R. C., and J. L. Hubby (1966) A molecular approach to the study of genie heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54:595–609.

    CAS  Google Scholar 

  • Mayr, E. (1942) Systematics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Mayr, E.(1963) Animal Species and Evolution. Harvard University Press (Belknap), Cambridge, Mass.

    Google Scholar 

  • Mivart St. G.(1871) On the Genesis of Species. Macmillan & Co., London.

    Google Scholar 

  • Nei, M. (1975) Molecular Population Genetics and Evolution. American Elsevier, New York.

    Google Scholar 

  • Osborn, H. F. (1922) Orthogenesis as observed from paleontological evidence beginning in the year 1889. Am. Nat. 56:134–143.

    CrossRef  Google Scholar 

  • Ostrom, J. H.(1979) Bird flight: How did it begin? Am. Sci. 67(l):46–56.

    PubMed  CAS  Google Scholar 

  • Powell, J. R. (1978) The founder-flush speciation theory: An experimental approach. Evolution 32:465–474.

    CrossRef  Google Scholar 

  • Robson, G. C., and O. W. Richards (1936) The Variation of Animals in Nature. Longmans, Green, New York.

    Google Scholar 

  • Romanes, G. J. (1900) Darwin and After Darwin, Vol. 2, Post-Darwinian Questions. Heredity and Utility. Longmans, Green, New York.

    Google Scholar 

  • Simpson, G. G. (1944) Tempo and Mode in Evolution. Columbia University Press, New York.

    Google Scholar 

  • Simpson, G. G. (1953) The Major Features of Evolution. Columbia University Press, New York.

    Google Scholar 

  • Stanley, S. M. (1975) A theory of evolution above the species level. Proc. Natl. Acad. Sci USA 72:646–650.

    PubMed  CrossRef  CAS  Google Scholar 

  • Thompson, D. W. (1942) Growth and Form. Macmillan & Co., New York.

    Google Scholar 

  • White, M. J. D. (1978) Modes of Speciation. Freeman, San Francisco.

    Google Scholar 

  • Wilson, A. C., G. L. Bush, S. M. Case, and M. C. King (1975) Social structuring of mammalian populations and rate of chromosomal evolution. Proc. Natl. Acad. Sci. USA 72:5061–5065.

    PubMed  CrossRef  CAS  Google Scholar 

  • Wilson, A. C., S. S. Carlson, and T. J. White (1977) Biochemical evolution. Annu. Rev. Biochem. 46:573–639.

    PubMed  CrossRef  CAS  Google Scholar 

  • Wilson, E. O., T. Eisner, W. R. Briggs, R. E. Dickerson, R. L. Metzenberg, R. O’Brien, M. Susman and W. E. Boggs (1973) Life on Earth. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Wright, S. (1967) Comments on the preliminary working papers of Eden and Waddington. Wistar Inst. Symp. 5:117–120.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Gould, S.J. (1987). Is a New and General Theory of Evolution Emerging?. In: Yates, F.E., Garfinkel, A., Walter, D.O., Yates, G.B. (eds) Self-Organizing Systems. Life Science Monographs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0883-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0883-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8227-3

  • Online ISBN: 978-1-4613-0883-6

  • eBook Packages: Springer Book Archive