Abstract

A functional requirement of several mammalian tissues is an ability to stretch. The protein elastin, a naturally occurring rubberlike elastomer found in many extracellular matrices, such as those of blood vessels and lung, provides this property. It is the major protein component of the so-called elastic fibers of connective tissue. This chapter describes the biochemical and ultrastructural characteristics of these naturally occurring elastic fibers with particular emphasis on the insoluble amorphous elastin component. The other component of elastic fibers is a glycoprotein or a family of glycoproteins, which has been designated as the microfibrillar component. The microfibrils, which comprise approximately 10% of the total volume of the elastic fibers, are thought to provide both a matrix into which the insoluble protein elastin is incorporated, and a mechanism by which shape and size of elastic fibers may be controlled.

Keywords

Rubber Glycine Pancreatitis Trypsin Palladium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ardelt, W., Ksiezny, S., and Niedzwiecka-Namyslowska, I., 1970, Spectrophotometric method for the determination of pancreatopeptidase E activity, Anal. Biochem. 34:180–187.CrossRefGoogle Scholar
  2. Astbury, W. T., 1940, The molecular structure of the fibers of the collagen group, J. Int. Soc. Leather Trade Chem. 24:69–72.Google Scholar
  3. Balo, J., and Banga, I., 1949, Elastase and elastase-inhibitor, Nature (London) 164:491.CrossRefGoogle Scholar
  4. Baugh, R. J., and Travis, J., 1976, Human leukocyte granule elastase: Rapid isolation and characterization, Biochemistry 15:836–841.CrossRefGoogle Scholar
  5. Baumann, P., 1959, The present state of our knowledge in the field of elastomers, Chem. Ind. (London) 48:1498–1504.Google Scholar
  6. Bourdillon, M. C., Brechemier, D., Blaes, N., Derouette, J. C., Hornebeck, W., and Robert, L., 1980, Elastase-like enzymes in skin fibroblasts and rat aorta smooth muscle cells, Cell Biol. Int. Rep. 4:313–320.CrossRefGoogle Scholar
  7. Burke, J. M., and Ross, R., 1979, Synthesis of connective tissue macromolecules by smooth muscle, Int. Rev. Connect. Tissue Res. 8:119–157.Google Scholar
  8. Burton, A. C., 1954, Relation of structure to function of the tissues of the wall of blood vessels, Physiol. Rev. 34:619–642.Google Scholar
  9. Clark, J., Vaughn, D. W., Aiken, B. M., and Kagan, H. M., 1980, Elastaselike enzymes in human neutrophils localized by ultrastructural cytochemistry, J. Cell Biol. 84:102–119.CrossRefGoogle Scholar
  10. Cliff, W. J., 1971, The ultrastructure of aortic elastica as revealed by prolonged treatment with OsO4, Exp. Mol. Pathol. 15:220–229.CrossRefGoogle Scholar
  11. Cotta-Pereira, G., Rodrigo, F. G., and David-Ferreira, J. F., 1977, The elastic system fibers, in: Elastin and Elastic Tissue, Advances in Experimental Medicine and Biology, Vol. 79 (L. B. Sandberg, W. R. Gray, and C. Franzblau, eds.), pp. 19–30, Plenum Press, New York.Google Scholar
  12. Cox, B. A., Starcher, B. C., and Urry, D. W., 1973, Coacervation of α elastin results in fiber formation, Biochim. Biophys. Acta 317:209–213.Google Scholar
  13. Cox, B. A., Starcher, B. C., and Urry, D. W., 1974, Coacervation of tropoelastin results in fiber formation, J. Biol. Chem. 249:997–998.Google Scholar
  14. Crombie, G., Foster, J. A., and Franzblau, C., 1973, Isolation of the tetrapeptide Gly-Val-Pro-Gly from an elastin digest, Biochem. Biophys. Res. Commun. 52:1228–1233.CrossRefGoogle Scholar
  15. DeClerk, Y. A., and Jones, P. A., 1980, The effect of ascorbic acid on the nature and production of collagen and elastin by rat smooth muscle cells, Biochem. J. 186:217–225.Google Scholar
  16. Faris, B., Salcedo, L. L., Cook, V., Johnson, L., Foster, J. A., and Franzblau, C., 1976, The synthesis of connective tissue protein in smooth muscle cells, Biochim. Biophys. Acta 418:93–103.Google Scholar
  17. Faris, B., Ferrera, R., Glembourtt, M., Mogayzel, P. J., Jr., Crombie, G., and Franzblau, C., 1981, Rapid quantitation of desmosine content in tissue hydrolysates by high-performance liquid chromatography, Anal. Biochem. 114:71–74.CrossRefGoogle Scholar
  18. Flory, P. J., 1953, Principles of Polymer Chemistry, Cornell University Press, Ithaca, N.Y.Google Scholar
  19. Foster, J. A., Bruenger, E., Gray, W. R., and Sandberg, L. B., 1973, Isolation and amino acid sequences of tropoelastin peptides, J. Biol. Chem. 248:2876–2879.Google Scholar
  20. Foster, J. A., Bruenger, E., Rubin, L., Imberman, M., Kagan, H., and Franzblau, C., 1976, Circular dichroism studies of an elastin cross-linked peptide, Biopolymers 15:833–841.CrossRefGoogle Scholar
  21. Foster, J. A., Mecham, R. P., Rich, C. B., Cronin, M. F., Levine, A., Imberman, M., and Salcedo, L. L., 1978, Proelastin, J. Biol. Chem. 253:2797–2803.Google Scholar
  22. Foster, J. A., Rich, C. B., DeSa, M. D., Jackson, A. S., and Fletcher, S., 1980a, Improved methodologies for the isolation and purification of tropoelastin, Anal. Biochem. 108:233–236.CrossRefGoogle Scholar
  23. Foster, J. A., Rich, C. B., Fletcher, S., Karr, S. B., and Przybyla, A., 1980b, Translation of chick aortic elastin messenger ribonucleic acid. Comparison to elastin synthesis in chick aorta organ culture, Biochemistry 19:857–864.CrossRefGoogle Scholar
  24. Franzblau, C., 1971, Elastin, Compr. Biochem. 26C:659–712.Google Scholar
  25. Franzblau, C., Sinex, F. M., Faris, B., and Lampidis, R., 1965, Identification of a new crosslinking amino acid in elastin, Biochem. Biophys. Res. Commun. 21:575–581.CrossRefGoogle Scholar
  26. Franzblau, C., Faris, B., and Papaioannou, R., 1969, Lysinonorleucine. A new amino acid from hydrolysates of elastin, Biochemistry 8:2833–2837.CrossRefGoogle Scholar
  27. Franzblau, C., Foster, J. A., and Faris, B., 1977, Role of crosslinking in fiber formation, in: Elastin and Elastic Tissue, Advances in Experimental Medicine and Biology, Vol. 79 (L. B. Sandberg, W. R. Gray, and C. Franzblau, eds.), pp. 313–327, Plenum Press, New York.Google Scholar
  28. Fullmer, H. M., and Lillie, R. D., 1958, The oxytalan fiber: A previously undescribed connective tissue fiber, J. Histochem. Cytochem. 6:425–430.CrossRefGoogle Scholar
  29. Gawlik, Z., 1965, Morphological and morphochemical properties of the elastic system in the motor organ of man, Folia Histochem. Cytochem. 3:233–251.Google Scholar
  30. Geokas, M. C., 1968, The role of elastase in acute pancreatitis. II. Intrapancreatic elastolytic activity in trypsin-induced acute pancreatitis in dogs, Arch. Pathol. 86:127–141.Google Scholar
  31. Gosline, J. M., 1976, The physical properties of elastic tissue, Int. Rev. Connect. Tissue Res. 7:211–249.Google Scholar
  32. Gotte, L., Giro, M. G., Volpin, D., and Horne, R. W., 1974, The ultrastructural organization of elastin, J. Ultrastruct. Res. 46:23–33.CrossRefGoogle Scholar
  33. Gray, W. R., Sandberg, L. B., and Foster, J. A., 1973, Molecular model for elastin structure and function, Nature (London) 246:461–466.CrossRefGoogle Scholar
  34. Hall, D. A., and Czerkawski, J. W., 1961, The reaction between elastase and elastic tissue. 4. Soluble elastins. 5. Groupings essential for elastolysis, Biochem. J. 80:121–136.Google Scholar
  35. Harkness, M. L. R., Harkness, R. D., and McDonald, D. A., 1957, The collagen and elastin content of the arterial wall in the dog, Proc. R. Soc. London Ser. B 146:541–551.CrossRefGoogle Scholar
  36. Hinek, A., and Thyberg, J., 1977, Electron microscopic observations on the formation of elastic fibers in primary cultures of aortic smooth muscle cells, J. Ultrastruct. Res. 60:12–20.CrossRefGoogle Scholar
  37. Hinman, L. M., Stevens, C. A., Matthay, R. A., and Gee, J. B. L., 1980, Elastase and lysozyme activities in human alveolar macrophages, Am. Rev. Respir. Dis. 121:263–271.Google Scholar
  38. Hoeve, C. A. J., 1977, The elasticity of elastin in the presence of diluents, in: Elastin and Elastic Tissue, Advances in Experimental Medicine and Biology, Vol. 79 (L. B. Sandberg, W. R. Gray, and C. Franzblau, eds.), pp. 607–619, Plenum Press, New York.Google Scholar
  39. Hoeve, C. A. J., and Flory, P. J., 1958, The elastic properties of elastin, J. Am. Chem. Soc. 80:6523–6526.CrossRefGoogle Scholar
  40. Hospelhorn, V. D., and Fitzpatrick, M. J., 1961, The isolation of elastic tissue from lung, Biochem. Biophys. Res. Commun. 6:191–195.CrossRefGoogle Scholar
  41. Jordan, R. E., Hewitt, N., Lewis, W., Kagan, H., and Franzblau, C., 1974, Regulation of elastase-catalyzed hydrolysis of insoluble elastin by synthetic and naturally occurring hydrophobic ligands, Biochemistry 13:3497–3503.CrossRefGoogle Scholar
  42. Kadar, A., Robert, B., and Robert, L., 1973, Étude biochimique et electromicroscopique des micro-fibriller du tissue conjonctif, Path. Biol. 21:80–88.Google Scholar
  43. Kagan, H. M., Crombie, G., Jordan, R., Lewis, W., and Franzblau, C., 1972, Proteolysis of elastin—ligand complexes. Stimulation of elastase digestion of insoluble elastin by sodium dodecyl sulfate, Biochemistry 11:3412–3418.CrossRefGoogle Scholar
  44. Kagan, H. M., Tseng, L., Trackman, P., Okamoto, K., Rapaka, S., and Urry, D. W., 1980, Repeat polypeptide models of elastin as substrates for lysyl oxidase, J. Biol. Chem. 255:3656–3659.Google Scholar
  45. Karlinsky, J. B., and Snider, G. L., 1978, Animal models for emphysema, Am. Rev. Respir, Dis. 117:1109–1133.Google Scholar
  46. Keith, D. A., Paz, M. A., and Gallop, P. M., 1977, Elastic tissue histochemistry, in: Elastin and Elastic Tissue, Advances in Experimental Medicine and Biology, Vol. 79 (L. B. Sandberg, W. R. Gray, and C. Franzblau, eds.), pp. 57–60, Plenum Press, New York.Google Scholar
  47. Lansing, A. I., Roberts, E., Ramasarma, G. B., Rosenthal, T. B., and Alex, M., 1951, Changes with age in amino acid composition of arterial elastin, Proc. Soc. Exp. Biol. Med. 76:714–717.Google Scholar
  48. Lansing, A. I., Rosenthal, T. B., Alex, M., and Dempsey, E. W., 1952, The structure and chemical characterization of elastic fibers as revealed by elastase and by electron microscopy, Anat. Rec. 114:555–570.CrossRefGoogle Scholar
  49. Legrand, Y., Caen, J., Booyse, F. M., Rafelson, M. E., Robert, B., and Robert, L., 1973, Studies on a human blood platelet protease with elastolytic activity, Biochim. Biophys. Acta 309:406–413.Google Scholar
  50. Lent, R. W., Smith, B., Salcedo, L. L., Faris, B., and Franzblau, C., 1969, Studies on the reduction of elastin. II. Evidence for the presence of α-aminoadipic acid δ-semialdehyde and its aldol condensation product, Biochemistry 8:2837–2845.CrossRefGoogle Scholar
  51. Lowry, O. H., Gilligan, D. R., and Katersky, E. M., 1941, The determination of collagen and elastin in tissues, with results obtained in various normal tissues from different species, J. Biol. Chem. 139:795–804.Google Scholar
  52. Mammi, M., Gotte, L., and Pezzin, G., 1968, Evidence for order in the structure of α-elastin, Nature (London) 220:371–373.CrossRefGoogle Scholar
  53. Mecham, R. P., and Lange, G., 1981, Methods Enzymol. (in press).Google Scholar
  54. Meyer, K. H., and Ferri, E., 1936, Die elastichen eigenshaften der elastichem und der Rollagenen fasern und ihre moleculare dentung, Arch. F. D. Ges. Physiol. 238:78–90.Google Scholar
  55. Miller, E. J., and Fullmer, H. M., 1966, Elastin: Diminished reactivity with aldehyde reagents in copper deficiency and lathyrism, J. Exp. Med. 123:1097–1108.CrossRefGoogle Scholar
  56. Miller, E. J., Martin, G. R., and Piez, K. A., 1964, The utilization of lysine in the biosynthesis of elastin crosslinks, Biochem. Biophys. Res. Commun. 17:248–253.CrossRefGoogle Scholar
  57. Morris, S. M., Stone, P. J., Rosenkrans, W. A., Calore, J. D., Albright, J. T., and Franzblau, C., 1978, Palladium chloride as a stain for elastin at the ultrastructural level, J. Histochem. Cytochem. 26:635–644.CrossRefGoogle Scholar
  58. Mukherjee, D. P., Hoffman, A. S., and Franzblau, C., 1974, The physical properties and molecular structure of ligamentum nuchae elastin, Biopolymers 13:2447–2459.CrossRefGoogle Scholar
  59. Muller, W., 1861, Beiträge zur Kenntniss der molekular Struktur thierischen Gewebe, Z. Ration. Med. III 10:173–194.Google Scholar
  60. Namiki, O., Faris, B., Tschopp, F., Fuglistaller, P., Hollander, W., Franzblau, C., and Schmid, K., 1980, Synthesis of glycosaminoglycans by cultured rabbit smooth muscle cells, Biochemistry 19:1900–1904.CrossRefGoogle Scholar
  61. Neuman, R. E., and Logan, M. A., 1950, The determination of collagen and elastin in tissues, J. Biol. Chem. 186:549–556.Google Scholar
  62. Partridge, S. M., 1962, Elastin, Adv. Protein Chem. 17:227–302.CrossRefGoogle Scholar
  63. Partridge, S. M., and Davis, H. F., 1955, The chemistry of connective tissues. 3. Composition of the soluble proteins derived from elastin, Biochem. J. 61:21–30.Google Scholar
  64. Partridge, S. M., Davis, H. F., and Adair, G. S., 1955, The chemistry of connective tissues. 2. Soluble proteins derived from partial hydrolysis of elastin, Biochem. J. 61:11–21.Google Scholar
  65. Partridge, S. M., Elsden, D. F., and Thomas, J., 1963, Constitution of the cross-linkages in elastin, Nature (London) 197:1297–1298.CrossRefGoogle Scholar
  66. Partridge, S. M., Elsden, D. F., Thomas, J., Dorfman, A., Tesler, A., and Ho, P. L., 1966, Incorporation of labelled lysine into the desmosine crossbridges in elastin, Nature (London) 209:399–400.CrossRefGoogle Scholar
  67. Quinn, R. S., and Blout, E. R., 1970, Spectrofluorometric assay for elastolytic enzymes, Biochem. Biophys. Res. Commun. 40:328–333.CrossRefGoogle Scholar
  68. Quintarelli, G., Starcher, B.C., Vocaturo, A., Di’Gianfilippo, F., Gotte, L., and Mecham, R. P., 1979, Fibrogenesis and biosynthesis of elastin in cartilage, Connect. Tissue Res. 7:1–19.CrossRefGoogle Scholar
  69. Rasmussen, B. L., Bruenger, E., and Sandberg, L. B., 1975, A new method for purification of mature elastin, Anal. Biochem. 64:255–259.CrossRefGoogle Scholar
  70. Richards, A. N., and Gies, W. J., 1902, Chemical studies of elastin, mucoid, and other proteins in elastic tissue with some notes on ligament extractives, Am. J. Physiol. 7:93–134.Google Scholar
  71. Robert, B., Szigeti, M., Derouette, J., Robert, L., Bouissou, H., and Fabre, M. T., 1971, Studies on the nature of the microfibrillar component of elastic fibers, Eur. J. Biochem. 21:507–516.CrossRefGoogle Scholar
  72. Robert, B., Robert, L., and Robert, A.-M., 1974, Élastine, élastase et arteriosclerose, Pathol. Biol. 22:661–669.Google Scholar
  73. Robert, L., and Poullain, N., 1963, Études sur la structure de l’élastine et le mode d’action de l’élastase. I. Nouvelle méthode de preparation de dérives solubles de l’élastine, Bull. Soc. Chim. Biol. 45:1317–1326.Google Scholar
  74. Robert, L., and Poullain, N., 1966, Structure de l’élastine Role des forces hydrophobes, Arch. Mal. Coeur Vaiss. 59:121–127.Google Scholar
  75. Ross, R., and Bornstein, P., 1969, The elastic fiber. I. The separation and partial characterization of its macromolecular components, J. Cell Biol. 40:366–381.CrossRefGoogle Scholar
  76. Rucker, R. B., and Tinker, D., 1977, Structure and metabolism of arterial elastin, Int. Rev. Exp. Pathol 17:1–45.Google Scholar
  77. Sandberg, L., 1976, Elastin structure in health and disease, Int. Rev. Connect. Tissue Res. 7:159–210.Google Scholar
  78. Sandberg, L. B., Weissman, N., and Smith, D. W., 1969, The purification and partial characterization of a soluble elastin-like protein from copper deficient porcine aorta, Biochemistry 8:2940–2945.CrossRefGoogle Scholar
  79. Sandberg, L. B., Weissman, N., and Gray, W. R., 1971, Structural features of tropoelastin related to the sites of crosslinks in aortic elastin, Biochemistry 10:52–56.CrossRefGoogle Scholar
  80. Sandberg, L. B., Gray, W. R., and Franzblau, C., (eds.), 1977, Elastin and Elastic Tissue, Advances in Experimental Medicine and Biology, Vol. 79, Plenum Press, New York.Google Scholar
  81. Schein, J., Carpousis, A., and Rosenbloom, J., 1977, Evidence that tropoelastin exists as a random coil, in: Elastin and Elastic Tissue, Advances in Experimental Medicine and Biology, Vol. 79 (L. B. Sandberg, W. R. Gray, and C. Franzblau, eds.), pp. 727–740, Plenum Press, New York.Google Scholar
  82. Schneider, J., and Hajek, A., 1928, Voroeursuche für eine neu method zur bewertung der enzymbeizen nach deren einfluss auf elastin, Biochem. Z. 195:403–414.Google Scholar
  83. Seifter, S., and Gallop, P. M., 1966, The structure proteins, in: The Proteins, Vol. IV (H. Neurath, ed.), pp. 153–458, Academic Press, New York.Google Scholar
  84. Senior, R. M., Huebner, P. F., and Pierce, J. A., 1971, Measurement of elastase activity by elastin agar and its use in the detection of antitrypsin deficiency, J. Lab. Clin. Med. 77:510–516.Google Scholar
  85. Sherr, C. J., Taubman, M. B., and Goldberg, B., 1973, Isolation of a disulfide-stabilized, three-chain polypeptide fragment unique to the precursor of human collagen, J. Biol. Chem. 248:7033–7038.Google Scholar
  86. Snider, R., Faris, B., Verbitzki, V., Moscaritolo, R., Salcedo, L. L., and Franzblau, C., 1981, Elastin biosynthesis and cross-link formation in rabbit aortic smooth muscle cell cultures, Biochemistry 20:2614–2618.CrossRefGoogle Scholar
  87. Stone, P. J., Crombie, G., and Franzblau, C., 1977, The use of tritiated elastin for the determination of subnanogram amounts of elastase, Anal. Biochem. 80:572–577.CrossRefGoogle Scholar
  88. Stone, P. J., Calore, J. D., Snider, G. L., and Franzblau, C., 1979, The dose-dependent fate of enzymatically active and inactivated tritiated methylated pancreatic elastase administered intratracheally in the hamster, Am. Rev. Respir, Dis. 120:557–587.Google Scholar
  89. Thomas, J., Elsden, D. F., and Partridge, S. M., 1963, Degradation products from elastin. Partial structure of two major degradation products from the crosslinkages in elastin, Nature (London) 200:651–652.CrossRefGoogle Scholar
  90. Urry, D. W., Okamoto, K., Harris, R. D., Hendrix, C. F., and Long, M. M., 1976, Synthetic, cross-linked polypentapeptide of tropoelastin: An anisotropic, fibrillar elastomer, Biochemistry 15:4083–4089.CrossRefGoogle Scholar
  91. Urry, D. W., Starcher, B., and Partridge, S. M., 1969, Coacervation of solubilized elastin effects a notable conformational change, Nature (London) 222:795–796.CrossRefGoogle Scholar
  92. Varadi, D. P., and Hall, D. A., 1965, Cutaneous elastin in Ehlers-Danlos syndrome, Nature (London) 208:1224–1225.CrossRefGoogle Scholar
  93. Visser, L., and Blout, E. R., 1969, Elastase substrates and inhibitors, Fed. Proc. 28:407.Google Scholar
  94. Volpin, D., Urry, D. W., Cox, B. A., and Gotte, L., 1976, Optical diffraction of tropoelastin and α elastin coacervates, Biochim. Biophys. Acta 439:253–258.Google Scholar
  95. Weis-Fogh, T., and Andersen, S. O., 1970, Elasticity and thermodynamics of elastin, in: Chemistry and Molecular Biology of the Intercellular Matrix (E. A. Balazs, ed.), pp. 671–677, Academic Press, New York.Google Scholar
  96. Wohlisch, E., Schmidt, W. J., Weitnauer, H., Gruning, W., and Rohrbach, R., 1943, Thermodynamic analysis of the extension of elastic tissues from the standpoint of the statistical-kinetic theory of rubber elasticity, Kolloid Z. 104:14–24.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Carl Franzblau
    • 1
  • Barbara Faris
    • 1
  1. 1.Department of BiochemistryBoston University School of MedicineBostonUSA

Personalised recommendations