Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 90))

  • 312 Accesses

Abstract

Myocardial infarction refers to the death of myocardium in a region of the heart in which blood flow is insufficient to sustain cell viability. The underlying pathology of acute myocardial infarction in man most commonly is due to atherosclerotic stenosis of the coronary arteries {1}. The exact process by which the coronary blood flow is interrupted, however, is still controversial. It is debatable as to whether thrombus formation is the primary event or if occlusion occurs by some other mechanism such as coronary spasm followed by thrombus formation. Coronary thrombi, especially those overlying ruptured plaque, are frequently found in autopsies of transmural infarctions {1} and recently, De Wood et al. {2} reported that coronary angiography revealed an occluding thrombosis in 86% of acute myocardial infarction patients in the first 6 h following the onset of symptoms. Another aspect of this problem is that coronary spasm commonly occurs just distal to a fixed obstructive lesion {3}. The pathological explanation of this finding may be that the tunica media of the mildly sclerotic artery remains normal or even hypertrophic {4,5} while the severly sclerotic artery has an atrophic tunica media {4,6}. Therefore, the exact sequence of events that bring about a rapid coronary obstruction remain unresolved. Regardless of the sequence of events, recent clinical experience reveals that perfusion can be restored in a large number of these patients by early intervention with thrombolytic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oliva PB: Pathophysiology of acute myocardial infarction, Ann Intern Med 94: 236–250, 1981.

    PubMed  CAS  Google Scholar 

  2. De Wood MA, Spores J, Hensley GR, Simpson CS, Eugster GS, Sutherland KI, Grunwald RP, Shields JP: Coronary arteriographic findings in acute transmural myocardial infarction. Circulation 68 (Suppl I): 139–149, 1983.

    Google Scholar 

  3. Bertrand ME, LaBlanche JM, Tilmant PY, Tieuleux FA, Delforge MR, Carre AG, Asseman P, Berzin B, Libersa C, Laurent JM: Frequency of provoked coronary arterial spasm in 1089 consecutive patients undergoing coronary arteriography. Circulation 65: 1299–1306, 1982.

    PubMed  CAS  Google Scholar 

  4. Leary T: Experimental atherosclerosis in the rabbit compared with human atheroslerosis. Arch Pathol 17: 453–492, 1934.

    CAS  Google Scholar 

  5. Leary T: Coronary spasm as a possible factor in proucing sudden death. Am Heart J 10: 338–344, 1935.

    Google Scholar 

  6. Horn H, Finkelstein LE: Arteriosclerosis of the coronary arteries and the mechanism of their occlusion. Am Heart J 19: 655–682, 1940.

    Google Scholar 

  7. Lenfant C, Moskowitz J: National Heart, Lung, and Blood Institute: New frontiers in heart, lung, and blood disease. Circulation 70 (Suppl III): III1–III4, 1984.

    PubMed  CAS  Google Scholar 

  8. Tenth Report of the Director, National Heart, Lung, and Blood Institute: Heart and Vascular Diseases. NIH Publication No. 84–2357, Vol II, p 37.

    Google Scholar 

  9. Maliani A, Lombardi F: Consideration of the fundamental mechanisms eliciting cardiac pain. Am Heart J 103: 575–578, 1982.

    Google Scholar 

  10. Margolis JR, Kannel WB, Feinleib M, Dawber TR, MacNamara PM: Clinical features of unrecognized myocardial infarction — silent and symptomatic. Eighteen year follow up: The Framingham Study. Am J Cardiol 32: 1–7, 1973.

    CAS  Google Scholar 

  11. Sullivan W, Vlodaver Z, Tuna N, Long L, Edward JE: Correlation of electrocardiographic and pathologic findings in healed myocardial infarction. Am J Cardiol 42: 724–732, 1978.

    PubMed  CAS  Google Scholar 

  12. Kannel WB: Risk factors for atherosclerotic cardiovascular disease. In: Cohn PF (ed) Diagnosis and Therapy of Coronary Artery Disease. Boston: Little Brown, 1979, pp 11–36.

    Google Scholar 

  13. Castelli WP: Epidemiology of coronary heart disease: The Framingham Study. Am J Med 76: 4–12, 1984.

    PubMed  CAS  Google Scholar 

  14. Lipid Research Clinics Program: The Lipid Research Clinics coronary primary prevention trial results. JAMA 251: 351–364, 365–374, 1984.

    Google Scholar 

  15. Key A: Coronary heart disease in seven countries. Circulation 41–42 (Suppl I): 11–1198

    Google Scholar 

  16. Hypertension Detection and Follow-up Program Cooperative Group: Effect of stepped care treatment on the incidence of myocardial infarction and angina pectoris. 5-year findings of the hypertension detection and follow-up program. Hypertension 6: 1198–1206, 1984.

    Google Scholar 

  17. Hypertension Detection and Follow-up Program Co-operative Group: Five-year findings of the hypertension detection and follow-up program. I. Reduction in mortality of persons with high blood pressure, including mild hypertension. JAMA 242: 2562–2571, 1979.

    Google Scholar 

  18. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR: Diabetes, blood lipids, and the tole of obesity in coronary heart disease risk for women. The Framingham Study. An Intern Med 87: 393–397, 1977.

    CAS  Google Scholar 

  19. Kannel WB: In: Brodoff BN and Bleicher SJ (eds) Diabetes Mellitus and Obesity. Baltimore: Williams & Wilkins, 1982, pp 735–740.

    Google Scholar 

  20. Jarret RF, McCartney P, Keen H: The Bedford Survey: Ten year mortality rates in newly diagnosed diabetics, borderline diabetics and normoglycemic controls and risk indices for coronary heart disease in borderline diabetics. Diabetologia 22: 79–84, 1982.

    Google Scholar 

  21. Jarret RJ: Type 2 (non-insulin-dependent) diabetes mellitus and coronary heart disease — chicken, egg or neithet? Diabetologia 26: 99–102, 1984.

    Google Scholar 

  22. Linder E: Measurement of normal and collateral coronary blood flow by close arterial and intramyocardial injection of krypton 85 and xenon 133. Acta Physiol Scand 68 (Suppl 272): 5–31, 1966.

    Google Scholar 

  23. Volkonas PS, Malsky PM, Paul SJ, Robbins SL, Hood WJ: Radioautographic studies in experimental myocardial infarction: Profiles of ischemic blood flow and quantification of infarct size in relation to magnitude of ischemic zone. Am J Cardiol 42: 67–75, 1978.

    Google Scholar 

  24. Schaper W: The Collateral Circulation of the Heart. Amsterdam: North-Holland,1971.

    Google Scholar 

  25. Okun EM, Factor SM, Kirk ES: End-capillary loops in the heart: An explanation for discrete myocardial infarctions without border zones. Science 206: 565–567, 1979.

    PubMed  CAS  Google Scholar 

  26. Hirzel HO, Sonnenblick EH, Kirk ES: Absence of a lateral border zone of intermediate creatine Phosphokinase depletion surrounding a central infarct 24 hours after acute coronary occlusion in the dog. Circ Res 41: 673–683, 1977.

    PubMed  CAS  Google Scholar 

  27. Yellon DM, Hearse DJ, Crome R, Grannel J, Wyse RKH: Characterization of the lateral interface between normal and ischemic tissue during acute myocardial infarction. Am J Cardiol 47: 1233–1239, 1981.

    PubMed  CAS  Google Scholar 

  28. Harken AH, Simson MB, Haselgrove, Wetstein L, Harden WR, Barlow CH: Early ischemia after complete coronary ligation in the rabbit, dog, pig, and monkey. Am J Physiol 241: H202–H210, 1981.

    PubMed  CAS  Google Scholar 

  29. Downey JM, Yoshida S, Harpen MD: A functional estimate of the overlap between adjacent coronary circulations in the dog. Basic Res Cardiol 81: 336–341, 1986.

    PubMed  CAS  Google Scholar 

  30. Reimer KA, Jennings RB: The “wavefront phenomenon” of myocardial ischemic cell death. II. Transmural progression of necrosis within the framework of ischemic bed size (myocardial at risk) and collateral flow. Lab Invest 40: 633–644, 1979.

    CAS  Google Scholar 

  31. Reimer KA, Jennings RB: Can we really quantitate myocardial cell injury? In: Hearse DJ and Yellon DM (eds) Therapeutic Approaches to Myocardial Infarct Size Limitation. New York: Raven Press, 1984, pp 163–184.

    Google Scholar 

  32. Jugdutt BI, Hutchins GM, Bulkley BH, Becker LC: Myocardial infarction in the conscious dog: Three-dimensional mapping of infarct, collateral flow and region at risk. Circulation 60: 1141–1150, 1979.

    PubMed  CAS  Google Scholar 

  33. Chambers DE, Yellon DM, Hearse DJ, Downey JM: Effects of flurbiprofen in altering the size of myocardial infarcts in dogs: Reduction or delay? Am J Cardiol 51: 884–890, 1983.

    PubMed  CAS  Google Scholar 

  34. DeBoer LW, Strauss HW, Kloner RA, Rude RE, Davis RF, Maroko PF, Braunwald E: Autoradiographic method for measuring the ischemic myocardium at risk: Effects of verapamil on infarct size after experimental coronary artery occlusion. Proc Natl Acad Sei 77: 6119–6123, 1980.

    CAS  Google Scholar 

  35. Darsee JR, Kloner KA, Braunwald E: Demonstration of lateral and epicardial border zone salvage by flurbiprofen using an in vivo method for assessing myocardium at risk. Circulation 63: 29–35, 1981.

    PubMed  CAS  Google Scholar 

  36. Downey HF, Bashour FA, Stephens A, Kechejian SJ, Underwood RH: Transmural gradients of retrograde collateral blood flow in acutely ischemic canine myocardium. Circ Res 35: 365–371, 1974.

    PubMed  CAS  Google Scholar 

  37. Yoshida S, Downey JM, Chambers DE, Hearse DJ, Yellon DM: Nifedipine limits infarct size for 24 hours in closed chest coronary embolized dogs. Basic Res Cardiol 80: 76–87, 1985.

    PubMed  CAS  Google Scholar 

  38. Crozatier B, Ross J, Franklin D, Bloor CM, White FC, Tomoike H, McKown DP: Myocardial infarction in the baboon: Regional function and the collateral circulation. Am J Physiol 235: H413–H421, 1978.

    PubMed  CAS  Google Scholar 

  39. Miura T, Yellon DM, Hearse DJ, Downey JM: The determinants of infarct size during permanent occlusion of a coronary artery in the closed chest dog. J Am Coll Cardiol, in press.

    Google Scholar 

  40. Lowe JE, Reimer KA, Jennings RB: Experimental infarct size as a function of the amount of myocardium at risk. Am J Pathol 90: 363–379, 1978.

    PubMed  CAS  Google Scholar 

  41. Koyanagi S, Eastham CL, Harrison DG, Marcus ML: Transmural variation in the relationship between myocardial infarct size and risk area. Am J Physiol 242: H867–H874, 1982.

    PubMed  CAS  Google Scholar 

  42. Nakamura M, Tomoike H, Sakai K, Ootsubo H, Kikuchi Y: Linear relationship between perfusion area and infarct size. Basic Res Cardiol 76: 438–442, 1981.

    PubMed  CAS  Google Scholar 

  43. Melin JA, Becker LC: Salvage of ischemic myocardium by prostacyclin during experimental myocardial infarction. J Am Col Cardiol 2: 279–286, 1983.

    CAS  Google Scholar 

  44. Reimer KA, Jennings RA, Cobb FR, Murdock RH, Greenfield JC, Becker LC, Bulkley BH, Hutchins GM, Schwartz RP, Bailey KR, Passamani ER: Animal models for protecting ischemic Results of the NHLBI cooperative study. Compar-sion of unconscious and conscious dog models. Circ Res 56: 651–665, 1985.

    CAS  Google Scholar 

  45. Jugdutt BI: Different relations between infarct size and occluded bed size in barbiturate-anesthetized versus conscious dog. J Am Coll Cardiol 6: 1035–1046, 1985.

    PubMed  CAS  Google Scholar 

  46. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB: The wavefront phenomenon of ischemic cell death. I. Myocardial infarct size versus duration of coronary occlusion in dogs. Circulation 56: 786–794, 1977.

    CAS  Google Scholar 

  47. Russell RE, Chagrasulis RW, Downey JM: Inhibitory effect of cardiac contraction on coronary collateral blood flow. Am J PHysiol 233: H541–H546, 1977.

    PubMed  CAS  Google Scholar 

  48. Moss AJ: Intramyocardial oxygen tension. Cardiovasc Res 2: 314–318, 1968.

    PubMed  CAS  Google Scholar 

  49. Windbury MM, Howe BB, Weiss HR: Effect of nitroglycerine and dipyridamole on epicardial and endocardial oxygen tension — further evidence for redistribution of myocardial blood flow. J Pharmacol Exp Ther 176: 184–199, 1971.

    Google Scholar 

  50. Feigl EO: Coronary physiology. Physiol Rev 63: 1–205, 1983.

    PubMed  CAS  Google Scholar 

  51. Gamble WJ, LaFarge CG, Fyler DC, Weisul J, Monroe RG: Regional coronary venous oxygen saturation and myocardial oxygen tension following abrupt changes in ventricular pressure in the isolated dog heart. Circ Res 34: 672–681, 1974.

    PubMed  CAS  Google Scholar 

  52. Weiss HR, Naubauer JA, Lipp JA, Sinha AK: Quantitative determination of regional oxygen consumption in the dog heart. Circ Res 42: 394–401, 1978.

    PubMed  CAS  Google Scholar 

  53. Holtz J, Grunewald WA, Manz R, Restorff WV, Bassenge E: Intracapillary hemoglobin oxygen saturation and oxygen consumption in different layers of left ventricular myocardium. Pflügers Arch 370: 253–258, 1977.

    PubMed  CAS  Google Scholar 

  54. Dunn RB, Griggs DM Jr: Transmural gradients in ventricular tissue metabolites produced by stopping coronary blood flow in the dog. Circ Res 37: 438–445, 1975.

    PubMed  CAS  Google Scholar 

  55. Dunn RB, Hickey KM, Griggs DM Jr: Effect of loading conditions on transmural lactate gradient in the ischemic left ventricule (abstr). Physiologist 18: 200, 1975.

    Google Scholar 

  56. Lowe JE, Cummings RG, Adams DH, Hull-Ryde EA: Evidence that ischemic cell death begins in the subendocardium independent of variations in collateral flow or wall tension. Circulation 68: 190–202, 1983.

    PubMed  CAS  Google Scholar 

  57. Lee JT, Ideker RE, Reimer KA: Myocardial infarct size and location in relation to the coronary vascular bed at risk in man. Circulation 64: 526–631, 1981.

    PubMed  CAS  Google Scholar 

  58. Suga H, Hayashi T, Shirahata M: Ventricular systolic pressure volume are as predictor of cardiac oxygen consumption. Am J Physiol 240: H320–H325, 1981.

    PubMed  CAS  Google Scholar 

  59. Reimer KA, Jennings RB: Verapamil in two reperfusion models of myocardial infarction: Protection of severely ischemic myocardium without limitation of infarct size. Lab Invest 51: 655–666, 1984.

    PubMed  CAS  Google Scholar 

  60. Reimer KA, Idecker RE, Jennings RB: Effect of coronary occlusion site on ischemic bed size and collateral blood flow in dogs. Cardiovasc Res 15: 668–674, 1981.

    PubMed  CAS  Google Scholar 

  61. Becker LC, Schuster EH, Jugdutt BI, Hutchins GM, Bulkley BH: Relationship between myocardial infarct size and occluded bed size in dogs: Difference between left antetior descending and circumflex coronary artery occlusions. Circulation 67: 549–557, 1983.

    PubMed  CAS  Google Scholar 

  62. Jolly SR, Kane WJ, Bailie MB, Abrams GD, Luc-chesi BR: Canine myocardial reperfusion injury. Its reduction by the combined administration of superoxide dismutase and catalase. Circ Res 54: 277–285, 1984.

    CAS  Google Scholar 

  63. Werns SW, Shea MJ, Driscoll EM, Cohem C, Abrams GD, Pitt B, Lucchesi BR: The independent effects of oxygen radical scavengers on canine infarct size. Reduction by superoxide dismutase but not catalase. Circ Res 56: 895–898, 1985.

    PubMed  CAS  Google Scholar 

  64. Yellon DM, Hearse DJ, Maxwell MP, Chambers DE, Downey JM: Sustained limitation of myocardial necrosis 24 hours after coronary artery occlusion: Verapamil infusion in dogs with small myocardial infarction. Am J Cardiol 51: 1409–1413, 1983.

    PubMed  CAS  Google Scholar 

  65. Muller KD, Sass S, Gottwik MG, Schaper W: Effect of myocardial oxygen consumption on infarct size in experimental coronary artery occlusion. Basic Res Cardiol 77: 170–181, 1982.

    PubMed  CAS  Google Scholar 

  66. Muller KD, Klein H, Schaper W: Changes in myocardial oxygen consumption 45 minutes after ex-perimetal coronary occlusion do not alter infarct size. Cardiovasc Res 14: 710–718, 1980.

    PubMed  CAS  Google Scholar 

  67. Jennings RB, Ganote CE: Structural changes in myocardium during acute myocardial ischemia. Circ Res 34–35 (Suppl III):III156–III168, 1974

    Google Scholar 

  68. Schaper J, Mulch J, Winkler B, Schaper W: Ul-trastructral, functional, and biochemical criteria for estimation of reversibility of ischemic injury: A study on the effects of global ischemia on the isolated dog heart. J Mol Cell Cardiol 11: 521–541, 1979.

    PubMed  CAS  Google Scholar 

  69. Decker RS, Wildenthal K: Sequential lysosomal alterations during cardiac ischemia. II. Ultrastruc-tral and cytochemical changes. Lab Invest 38: 662–673, 1978.

    CAS  Google Scholar 

  70. Wildenthal K, Decker RS, Pool AR, Griffin EE, Dingle JT: Sequential lysosomal alterations during cardiac ischemia. I. Biochemical and immunohisto-chemical changes. Lab Invest 38: 656–661, 1978.

    CAS  Google Scholar 

  71. Kloner RA, Ganote CE, Jennings RB: The“no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54: 1496–1508, 1974.

    PubMed  CAS  Google Scholar 

  72. Kloner RA, Rude RE, Carlson N, Maroko PR, De-Boer LWV, Braunwald E: Ultrastructural evidenceof microvascular damage and myocardial cell injury after coronary artery occlusion: Which comes first? Circulation 62: 945–952, 1980.

    PubMed  CAS  Google Scholar 

  73. Tillmanns H, Kubler W: What happens in the microcirculation? In: Hearse DJ, Yellon DM (eds) Therapeutic Approaches to Myocardial Infarct Size Limitation. New York: Raven Press, 1984, pp 107–124.

    Google Scholar 

  74. Sommers HM, Jennings RB: Experimental acute myocardial infarction. Histologic and histochemical studies of early myocardial infarcts induced by temporary or permanent occlusion of a coronary artery. Lab Invest 13: 1491–1503, 1964.

    PubMed  CAS  Google Scholar 

  75. Robbins SL, Cotran RS: Pathologic Basis of Disease. Philadelphia: Saunders, 1979.

    Google Scholar 

  76. Fishbein MC, Maclean D, Maroko PR: The histopathologic evoluation of myocardial infarction. Chest 73: 843–849, 1978.

    PubMed  CAS  Google Scholar 

  77. Schaper J, Schaper W: Reperfusion of ischemic myocardium: Ultrastructural and histochemical aspects. J Am Coll Catdiol 1: 1037–1046, 1983.

    CAS  Google Scholar 

  78. Kloner RA, Ganote CE, Whalen DA Jr, Jennings RB: Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow. Am J Pathol 74: 399–422, 1974.

    CAS  Google Scholar 

  79. Whalen DA, Hamilton DG, Ganote CE, Jennings RB. The effect of a transient period of ischemia on myocardial cells. I: Effects on cell volume regulation. Am J Pathology 74: 381–398, 1974.

    CAS  Google Scholar 

  80. Hearse DJ, Humphrey SM, Bullock GR: The oxygen paradox and the calcium paradox: Two facets of the same problem? J Mol Cell Cardiol 10: 641–668, 1978.

    PubMed  CAS  Google Scholar 

  81. Shine KI, Douglas AM, Ricchiati NV: Calcium, strontium, and barium movements during ischemia and reperfusion in rabbit ventricle. Implication for myocardial preservation. Circ Res 43: 712–324, 1974.

    Google Scholar 

  82. Ganote CE, Sims MA: Physical stress-mediated enzyme release from calcium-deficient hearts. J Mol Cell Cardiol 15: 421–429, 1983.

    PubMed  CAS  Google Scholar 

  83. Bulkley BH: Pathology of coronary atherosclerotic heart disease. In: Hurst JW (ed) The Heart, 6th edition. New York: McGraw-Hill, 1986, pp 839–856.

    Google Scholar 

  84. Bresnahan GF, Roberts R, Shell WE, Ross J, Sobel BE: Deleterious effects due to hemorrhage after myocardial reperfusion. Am J Cardiol 33: 82–86, 1974.

    PubMed  CAS  Google Scholar 

  85. Fishbein MC, Y-Rit J, Lando U, Kanmatsuse K, Mercier JC, Ganz W: The relationship of vascular injury and myocardial hemorrhage to necrosis after reperfusion. Circulation 62: 1274–1279, 1980.

    PubMed  CAS  Google Scholar 

  86. Roberts CS, Schoen FJ, Kloner RA: Effect of coronary reperfusion on myocardial hemorrhage and infarct healing. Am J Cardiol 52: 610–614, 1983.

    PubMed  CAS  Google Scholar 

  87. Chambers DE, Parks DA, Patterson G, Roy R, McCord JM, Yoshida S, Parmley LF, Downey JM:Xanthine oxidase as a source of free radical damage in myocardial ischemia. J Mol Cell Cardiol 17:145–152, 1985.

    PubMed  CAS  Google Scholar 

  88. Jennings RB, Reimer KA, Hill ML, Mayer SE: Total ischemia in dog hearts, in viro. 1. Comparison of high energy phosphate production, utilization, and depletion, and of adenine nucleotide catabolism in total ischemia in vitro vs. severe ischemia in vivo. Circ Res 49: 892–900, 1981.

    PubMed  CAS  Google Scholar 

  89. Reimer KA, Jennings RB, Hill ML: Total myocar-dial ischemia, in vitro. 2. High energy phosphate depletion and associated defects in energy metabolism, cell volume regulation, and sarcolemmal integrity. Circ Res 49: 910–911, 1981.

    Google Scholar 

  90. De Jong JW, Harmsen E, de Tombe PP: Diltiazem administered before or during myocardial ischemia decreases adenine nucleotide catabolism. J Mol Cell Cardiol 16: 363–370, 1984.

    PubMed  Google Scholar 

  91. Jennings RB, Steenbergen C: Nucleotide metabolism and cellulat damage in myocardial ischemia. Ann Rev Physiol 47: 727–749, 1985.

    CAS  Google Scholar 

  92. Rubio R, Berne RM, Dobson Jr JG: Sites of ade-nosine production in cardiac and skeletal muscle. Am J Physiol 225: 938–953, 1973.

    PubMed  CAS  Google Scholar 

  93. Shutz W, Schräder J, Gerlach E: Different sites of adenosine formation in the heart. Am J Physiol 240: H963–H970, 1981.

    Google Scholar 

  94. Liu MS, Feinbetg H: Incorporation of adenosine-8–14C and inosine-8–l4C into rabbit heart adenine nucleotides. Am J Physiol 220: 1242–1248, 1971.

    PubMed  CAS  Google Scholar 

  95. Plagemann PGW, Wohlhueter RM: Nucleotide transport in mammalian cells and interaction with intracellular metabolism. In: Berne RM, Rail TW, Rubio R (eds) Regulatory Function of Adenosine, The Hague: Martinus Nijhoff, 1983, pp 179–201.

    Google Scholar 

  96. Berne RM: The role of adenosine in the tegulation of coronary blood flow. Circ Res 47: 807–813, 1980.

    PubMed  CAS  Google Scholar 

  97. Berne RM, Rubio R, Dobson Jr JG, Curnish RR: Adenosine and adenine nucleotides as possible mediators of cardiac and skeletal muscle blood flow regulation. Circ Res 28 (Suppl I): 1115–1119, 1971.

    Google Scholar 

  98. Rubio VR, Wiedmeier T, Berne RM: Nucleoside Phosphorylase: Localization and role in the myocardial distribution of purines. Am J Physiol 222: 550–555, 1972.

    PubMed  CAS  Google Scholar 

  99. Jarasch ED, Bruder G, Heid HW: Significance of xanthine oxidase in capillary endothelial cells. Acta Physiologica Scabdinavica 126 (Suppl 548): 39–46, 1986.

    Google Scholar 

  100. Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA: Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 92: 187–214, 1978.

    PubMed  CAS  Google Scholar 

  101. Hearse DJ, Braimbridge MV, Jynge P: Models and markers for the investigation of myocardial tissue damage. In: Protection of the Ischemic Myocardium: Cardioplegia, New York: Raven Press, 1981, pp 50–94.

    Google Scholar 

  102. Jennings RB,Schaper J, Hill ML, Steenbergen C, Reimer KA: Effect of reperfusion late in the phase of reversible ischemic injury. Changes in cell volume, electrolytes, metabolites, and ultrastructure. Circ Res 56: 262–278, 1985.

    PubMed  CAS  Google Scholar 

  103. Farber JL: Biology of disease. Membrane injury and calcium homeostasis in the pathogenesis of coagula-tive necrosis. Lab Invest 47: 114–123, 1982.

    CAS  Google Scholar 

  104. Cheung JY, Bonventre JV, Malis CD, Leaf A: Calcium and ischemic injury. N Eng J Med 314: 1670–1676, 1986.

    CAS  Google Scholar 

  105. Nayler WG, Poole-Wilson PA, Williams A: Hypoxia and calcium. J Mol Cell Cardiol 11: 683–706, 1979.

    PubMed  CAS  Google Scholar 

  106. Bourdillon PD, Pool-Wilson PA: The effects of verapamil, quiescence, and cardioplegia on calcium exchange and mechanical function in ischemic rabbit myocardium. Circ Res 50: 360–368, 1982.

    PubMed  CAS  Google Scholar 

  107. Shen AC, Jennings RB: Myocardial calcium and magnesium in acute ischemic injury. Am J Pathol 67: 417, 1972.

    PubMed  CAS  Google Scholar 

  108. Nayler WG: The role of calcium in the ischemic myocardium. Am J Pathol 102: 262–270, 1981.

    PubMed  CAS  Google Scholar 

  109. Jennings RB, Reimet KA: Lethal myocardial ischemic injury. Am J Pathol 102: 241–255, 1981.

    PubMed  CAS  Google Scholar 

  110. Jennings RB, Steenbergen C, Kinney RB, Hill ML, Reimer KA: Comparison of the effect of ischemia and anoxia on the sarcolemma of the dog heart. Eur Heart J 4 (Suppl H): 123–137, 1983.

    PubMed  CAS  Google Scholar 

  111. Jennings RB, Reimet KA, Steenbergen C: Myocardial ischemic and reperfusion: Role of calcium. In: Parratt JR (ed) Control and Manipulation of Calcium Movement, New York: Raven Press, 1984.

    Google Scholar 

  112. Reddy MK, Etlinger JD, Rabinowitz M, Fischman DA, Zak R: Removal of Z-lines and alpha actin from isolated myofibrils by a calcium-activated neutral protease. J Biol Chem 250: 4278–4284, 1975.

    PubMed  CAS  Google Scholar 

  113. Yellon DM, Kudoh Y, Maxwell MP, Yoshida S, Hearse DJ, Downey JM: Does nifedipine cause a sustained limitation of infarct size during permanent coronary artery occlusion in the dog (abstr)? J Mol Cell Cardiol 18 (Suppl 1): 204, 1986.

    Google Scholar 

  114. Nayler WG, Ferrari R, Williams A: Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic and reperfused myocardium. Am J Cardiol 46: 242–248, 1980.

    PubMed  CAS  Google Scholar 

  115. Cheung JY, Leaf A, Bonventre JV: Mechanism of protection by verapamil and nifedipine from anoxic injury in isolated cardiac myocytes. Am J Physiol 246: C323–329, 1984.

    PubMed  CAS  Google Scholar 

  116. Sirnes PA et al.: Evolution of infarct size during the early use of nifedipine in patients with acute myocardial infarction: The Norwegian multicenter trial. Circulation 70: 638–644, 1984.

    PubMed  CAS  Google Scholar 

  117. Franson RC, Pang DC, Towle DW, Weglicki WB: Phospholipase A activity of highly enriched preparations of cardiac sarcolemma from hamster and dog. J Mol Cell Cardiol 10: 921–930, 1978.

    PubMed  CAS  Google Scholar 

  118. Franson RC, Waite M, Weglicki WB: Phospholipase A activity of lysosomes of rat myocardial tissue. Biochemistry 11: 472–476, 1972.

    PubMed  CAS  Google Scholar 

  119. Weglicki WB, Waite BM, Sisson P, Shohet SB. Myocardial phospholipase A of microsomal and mitochondrial fractions. Biochem Biophys Acta 231: 512–519, 1971.

    PubMed  CAS  Google Scholar 

  120. Chien KR, Reeves JP, Buja M, Bonte F, Parkey RW, Willerson JT. Temporal and topographical correlations with Tc-99m-PPi accumulation and an in vitro sarcolemmal Ca2+ permeability defect. Circ Res 48: 711–719, 1981.

    PubMed  CAS  Google Scholar 

  121. Steenbergen C, Jennings RB: Relationship between lysophospholipid accumulation and plasma membrane injury during total in vitro ischemia in dog heart. J Mol Cell Cardiol 16: 605–621, 1984.

    PubMed  CAS  Google Scholar 

  122. Peyton RB, Hill ML, Kinney RB, Reimer KA, Jennings RB: The effect of chlorpromazine on myocardial injury in total ischemia (abstr). Fed Proc 41: 381, 1982.

    Google Scholar 

  123. Vary TC, Reibel DK, Neely JR: Control of energy metabolism of heart muscle. Ann Rev Physiol 43: 419–430, 1981.

    CAS  Google Scholar 

  124. Bricknell OL, Opie LH: Effects of substrates on tissue metabolic changes in the isolated rat heart during underperfusion and on release of lactate dehydrogenase and arrhythmias during reperfusion. Circ Res 43: 102–114, 1978.

    PubMed  CAS  Google Scholar 

  125. Neely JR, Feuvray D: Metabolic products and myocardial ischemia. Am J Pathol 102: 282–291, 1981.

    PubMed  CAS  Google Scholar 

  126. Pitts BJR, Tate CA, Van Winkle WB, Wood JM, Entman ML: Palmitylcarnitine inhibition of the calcium pump in cardiac sarcoplasmic reticulum: A possible role in myocardial ischemia. Life Sei 23: 391–402, 1978.

    CAS  Google Scholar 

  127. Ichihara K, Neely JR: Recovery of ventricular function in reperfused ischemic rat hearts exposed to fatty acids. Am J Physiol 249: H492–H497, 1985.

    PubMed  CAS  Google Scholar 

  128. Freeman BA, Crapo JD: Biology of disease. Free radicals and tissue injury. Lab Invest 47: 412–426, 1982.

    CAS  Google Scholar 

  129. McCord JM: Oxygen-drived free radicals in postishemic tissue injury. N Eng J Med 312: 159–163, 1985.

    CAS  Google Scholar 

  130. Mitsos SE, Askew TE, Fantone JC, Kunkel SL, Abrams GD, Schork A, Lucchesi BR: Protective effects of N-2-mercaptopropionyl glycine against myocardial reperfusion injury after neutrophil depletion in the dog: Evidence for the role of intracellular-derived free radicals. Circulation 73: 1077–1086, 1986.

    PubMed  CAS  Google Scholar 

  131. Ambrosio G, Becker LC, Hutchins GH, Weisfeldt ML: Reduction in experimental infarct size by re-combinant human superoxide dismutase administration during reperfusion (abstt). Circulation 72 (Suppl III): III351, 1985.

    Google Scholar 

  132. . Gallahger KP, Buda AJ, Pace D, Gerren RA, Shlafer M: Failure of superoxide dismutase and catalase to alter size of infarction in conscious dogs after 3 hours of occlusion followed by reperfusion. Circulation 73: 1065–1076, 1986.

    Google Scholar 

  133. Klebanoff SJ: Oxygen metabolism and the toxic properties of phagocytes. Ann Intern Med 93: 480–489, 1980.

    PubMed  CAS  Google Scholar 

  134. Romson JL, Hook BG, Kunkel SL, Abrams GD, Shork MA, Lucchesi BR. Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Ciruclation 67: 1016–1023, 1983.

    CAS  Google Scholar 

  135. Downey JM, Miura T, Eddy LJ, Chambers DE, Hearse DJ, Yellon DM: Xanthine oxidase is a source of free radical in the ischemic rat heart but not the rabbit. J Mol Cell Cardiol, in press.

    Google Scholar 

  136. Werns SW, Shea MJ, Mitsos SE, Dysko RC, Fan-tone JC, Schotk MA, Abrams GD, Pitt B, Lucchesi BR: Reduction of the size of infarction by allopurinol in the ischemic-teperfused canine heart. Circulation 73: 518–524, 1986.

    PubMed  CAS  Google Scholar 

  137. Reimer KA, Jennings RB: Failure of the xanthine oxidase inhibitor allopurinol to limit infarct size after ischemia and reperfusion in dogs. Circulation 71: 1069–1075, 1985.

    PubMed  CAS  Google Scholar 

  138. Eddy LJ, Stewart J, Jones H, Yellon D, McCord J, Downey J: Xanthine oxidase is detected in ischemic rat heart but not human heats. The Physiologist 29: 166, 1986.

    Google Scholar 

  139. Cohen G: Oxygen radicals, hydrogen peroxide, and Parkinson’s disease. In: Autor A (ed) Pathology of Oxygen. New York: Academic Press, 1982.

    Google Scholar 

  140. Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Covell JW, Ross J, Braunwald E: Factors influencing infarct size following experimental coronary occlusion. Circulation 43: 67–82, 1971.

    PubMed  CAS  Google Scholar 

  141. Bovaris A, Chance B: The mitochondrial generation of hydrogen peroxide. Biochem J 134: 707–716, 1973.

    Google Scholar 

  142. Guarnieri C, Flaaamigi F, Caldarera CM: Role of oxygen in the cellulat damage induced by reoxyge-nation of the hypoxic heart. J Mol Cell Cardiol 12: 797–808, 1980.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Miura, T., Yellon, D.M., Downey, J.M. (1989). Myocardial Infarction. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0873-7_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0873-7_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8222-8

  • Online ISBN: 978-1-4613-0873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics