Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 90))

  • 314 Accesses

Abstract

The mechanism of contraction of smooth muscle is generally believed to be fundamentally the same as that of skeletal and cardiac muscles, i.e.,contraction occurs according to the crossbridge cycling-sliding filament model whereby thick and thin filaments slide relative to one another at the expense of ATP hydrolysis {1}This conclusion has come largely from ultrastructural studies of a variety of different smooth muscles{2}At the molecular level, the contractile apparatus of smoth muscle consist of the contractile proteins (actin and myosin, which are organized into thin and thick filaments, respectively) and associated regularly proteins (tropomyosin,myosin light-chain kinase, calmodulin,myosin light-chain phosphatase, and caldesmon).The tissue contents of actin,myosin, and tropomyosin in various smooth-muscle tissues have been discussed by Hartshorne{3}. In general,smooth muscles contain less myosin and more actin and tropomyosin than do skeletal muscles (table 42–1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cooke R: The mechanism of muscle contraction. CRC Crit Rev Biochem 21: 53–118, 1986.

    PubMed  CAS  Google Scholar 

  2. Somlyo AV: Ultrastructure of vascular smooth muscle. In: Bohr DF, Somlyo AP, Sparks HV (eds) Handbook of Physiology, Section 2: The Cardiovascular System. II: Vascular Smooth Muscle. Bethesda: American Physiological Society, 1980, pp 33–67

    Google Scholar 

  3. Hartshorne DJ: Biochemistry of the conttactile process in smooth muscle. In: Johnson LR (ed) Physiology of the Gastrointestinal Tract. New York: Raven Press, 1981, pp 243–267.

    Google Scholar 

  4. Small JV, Fürst DO, De Mey J: Localization of filamin in smooth muscle. J Cell Biol 102: 210–220, 1986.

    PubMed  CAS  Google Scholar 

  5. Adelstein RS, Eisenbetg E: Regulation and kinetics of the actin-myosin-ATP interaction. Ann Rev Biochem 49: 921–956, 1980.

    PubMed  CAS  Google Scholar 

  6. Kamm KE, Stull JT: The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Ann Rev Pharmacol Toxicol 25: 593–620, 1985.

    CAS  Google Scholar 

  7. Van Breeman C, Leijten P, Yamamoto H, Aaronson P, Cauvin C: Calcium activation of vascular smooth muscle. Hypertension 8 (Suppl II): 89–95, 1986.

    Google Scholar 

  8. Walsh MP, Hartshorne DJ: Actomyosin of smooth muscle. In: Cheung WY(ed) Calcium and Cell Function, Vol III. New York: Academic Press, 1982, pp 223–269.

    Google Scholar 

  9. Lehman W, Szent-Györgyi AG: Regulation of muscular contraction. J Gen Physiol 66: 1–30, 1975.

    PubMed  CAS  Google Scholar 

  10. Perry SV: The regulation of contractile activity in muscle. Biochem Soc Trans 7: 593–617, 1979.

    PubMed  CAS  Google Scholar 

  11. Weber A, Murray JM: Molecular control mechanisms in muscle contraction. Physiol Rev 53: 612–673, 1973.

    PubMed  CAS  Google Scholar 

  12. Walsh MP: Calcium regulation of smooth muscle contraction. In: Marmé D (ed) Calcium and Cell Physiology. Berlin: Springer-Verlag, 1985, pp 170–203.

    Google Scholar 

  13. Kendrick-Jones J, Lehman W, Szent-Györgyi AG: Regulation in molluscan muscles. J Mol Biol 54: 313–326, 1970.

    PubMed  CAS  Google Scholar 

  14. Maruta H, Korn ED: Proteolytic separation of the actin-activatable ATPase site from the phosphorylation site on the heavy chain of Acanthamoeba myosin IA. J Biol Chem 256: 503–506, 1981.

    PubMed  CAS  Google Scholar 

  15. Kuczmarski ER, Spudich JA: Regulation of myosin self-assembly. Phosphorylation of Dictyostelium heavy chain inhibits formation of thick filaments. Proc Natl Acad Sci USA 77: 7292–7296, 1980.

    CAS  Google Scholar 

  16. Ngai PK, Gröschel-Stewart U, Walsh MP: Comparison of the effects of smooth and skeletal muscle actins on smooth muscle actomyosin Mg2+-ATPase. Biochem Int 12: 89–93, 1986.

    PubMed  CAS  Google Scholar 

  17. Persechini A, Hartshorne DJ: Phosphorylation of smooth muscle myosin: Evidence for cooperativity between the myosin heads. Science 213: 1383–1385, 1981.

    PubMed  CAS  Google Scholar 

  18. Bretscher A:Smooth muscle caldesmon.Rapid purification and F-actin cross-linking properties. J Biol Chem 259: 12873–12880, 1984.

    Google Scholar 

  19. Ngai PK, Carruthers CA, Walsh MP: Isolation of the native form of chicken gizzard myosin light-chain kinase. Biochem J 218: 863–870, 1984.

    PubMed  CAS  Google Scholar 

  20. Walsh MP, Valentine KA, Ngai PK, Carruthers CA, Holcenberg MD: Ca2+-dependent hydrophobic-interaction chromatography. Isolation of a novel Ca2+-binding protein and protein kinase C from bovine brain. Biochem J 224: 117–127, 1984.

    CAS  Google Scholar 

  21. Clark T, Ngai PK, Sutherland C, Gröschel-Stewart U, Walsh MP: Vascular smooth muscle caldesmon. J Biol Chem 261: 8028–8035, 1986.

    PubMed  CAS  Google Scholar 

  22. Vibert PJ, Haselgrove JC, Lowy J, Poulsen FR: Structural changes in actin-containing filaments of muscle. J Mol Biol 71: 757–767, 1972.

    PubMed  CAS  Google Scholar 

  23. Ishikawa H, Bischoff R, Holzer H: Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol 43: 312–328, 1969.

    PubMed  CAS  Google Scholar 

  24. Bond M, Somlyo AV: Dense bodies and actin polarity in vertebrate smooth muscle. J Cell Biol 95; 403–413, 1982.

    PubMed  CAS  Google Scholar 

  25. Vandekerckhove J, Weber K: At least six different actins are expressed in a higher mammal: An analysis based on the amino acid sequence of the aminoterminal tryptic peptide. J Mol Biol 126: 783–802, 1978.

    PubMed  CAS  Google Scholar 

  26. Vandekerckhove J, Weber K: The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle and rabbit slow skeletal muscle. Differentiation 14: 123–133, 1979.

    PubMed  CAS  Google Scholar 

  27. Fatigati V, Murphy RA: Actin and tropomyosin variants in smooth muscles. Dependence on tissue type. J Biol Chem 259: 14383–14388, 1984.

    CAS  Google Scholar 

  28. Hanson J, Lednev V, O’Brien EJ, Bennett PM: Structure of the actin-containing filaments in vertebrate skeletal muscle. Cold Spring Harbor Symp Quant Biol 37: 311–318, 1972.

    Google Scholar 

  29. Huxley HE: Structural changes in the actin and myosin containing filaments during contraction. Cold Spring Harbor Symp Quant Biol 37: 361–376, 1972.

    Google Scholar 

  30. Cummins P, Perry SV: Chemical and immunochemical characteristics of tropomyosins from striated and smooth muscles. Biochem J 141: 43–49, 1973.

    Google Scholar 

  31. Dabrowska R, Nowak E, Drabikowski W: Comparative studies of chicken gizzard and rabbit skeletal tropomyosin. Comp Biochem Physiol 65B: 75–83, 1980.

    CAS  Google Scholar 

  32. Strasburg GM, Greaser ML: The native subunit pattern of tropomyosin. FEBS Lett 72: 11–14, 1976.

    PubMed  CAS  Google Scholar 

  33. Sanders C, Smillie LB: Amino acid sequence of chicken gizzard β-tropomyosin: Comparison of the chicken gizzard, rabbit skeletal and equine platelet tropomyosins. J Biol Chem 260: 7264–7275, 1985.

    PubMed  CAS  Google Scholar 

  34. McLachlan AD, Stewart M: The 14-fold periodicity in α-tropomyosin and the interaction with actin. J Mol Biol 103: 271–298, 1976.

    PubMed  CAS  Google Scholar 

  35. Murphy RA, Herlihy JT, Megerman J: Force-generating capacity and contractile protein content of arterial smooth muscle. J Gen Physiol 64: 691–705, 1974.

    PubMed  CAS  Google Scholar 

  36. Fine RE, Blitz AL: A chemical comparison of tropomyosins from muscle and non-muscle tissues. J Mol Biol 95: 447–454, 1975.

    PubMed  CAS  Google Scholar 

  37. Sobieszek A, Small JV: Regulation of the actin-myosin interaction in vertebrate smooth muscle: Activation via a myosin light-chain kinase and the effect of tropomyosin. J Mol Biol 112: 559–576, 1977.

    PubMed  CAS  Google Scholar 

  38. Miyata H, Chacko S: Role of tropomyosin in smooth muscle contraction: Effect of tropomyosin binding to actin on actin activation of myosin ATPase. Biochemistry 25: 2725–2729, 1986.

    PubMed  CAS  Google Scholar 

  39. Parry DAD, Squire JM: Structural role of tropomyosin in muscle regulation: Analysis of the X-ray diffraction patterns from relaxed and contracting muscles. J Mol Biol 75: 33–55, 1973.

    PubMed  CAS  Google Scholar 

  40. Craig R, Smith R, Kendrick-Jones J: Light chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature (Lond) 302: 436–439, 1983.

    CAS  Google Scholar 

  41. Seidel JC: Fragmentation of gizzard myosin by α-chymotrypsin and papain, the effects on ATPase activity, and the interaction with actin. J Biol Chem 255: 4355–4361, 1980.

    PubMed  CAS  Google Scholar 

  42. Somlyo AV, Butler TM, Bond M, Somlyo AP: Myosin filaments have nonphosphorylated light chains in relaxed smooth muscle. Nature (Lond) 294: 567–569, 1981.

    CAS  Google Scholar 

  43. Ikebe M, Hartshorne DJ: Proteolysis of smooth muscle myosin by Staphylococcus aureus protease: Preparation of heavy meromyosin and subfragment 1 with intact 20,000-dalton light chains. Biochemistry 24: 2380–2387, 1985.

    PubMed  CAS  Google Scholar 

  44. Perrie WT, Smillie LB, Perry SV: A phosphorylated light-chain component of myosin from skeletal muscle. Biochem J 135: 151–164, 1973.

    PubMed  CAS  Google Scholar 

  45. Sobieszek A: Vertebrate smooth muscle myosin. Enzymatic and structural properties. In: Stephens NL (ed) The Biochemistry of Smooth Muscle. Baltimore: University Park Press, 1977, pp 413–443.

    Google Scholar 

  46. Walsh MP, Hinkins S, Dabrowska R, Hartshorne DJ: Smooth muscle myosin light chain kinase. Methods Enzymol 99: 279–288, 1983.

    PubMed  CAS  Google Scholar 

  47. Chacko S: Effect of phosphorylation, Ca2+ and tropomyosin on actin-activated ATPase activity of mammalian smooth muscle myosin. Biochemistry 20: 702–707, 1981.

    PubMed  CAS  Google Scholar 

  48. Chacko S, Rosenfeld A: Regulation of actin-activated ATP hydrolysis by arterial myosin. Proc Natl Acad Sei USA 79: 292–296, 1982.

    CAS  Google Scholar 

  49. Trybus KM, Lowey S: Mechanism of smooth muscle myosin phosphorylation. J Biol chem 260: 15988–15995, 1985.

    PubMed  CAS  Google Scholar 

  50. Ikebe M, Ogihara S, Tonomura Y: Non-linear de-pendence of actin activated Mg2+ATPase activity on the extent of phosphorylation of gizzard myosin and H meromyosin. J Biochem (Tokyo) 91: 1809–1812, 1982.

    PubMed  CAS  Google Scholar 

  51. Sellers JR, Chock PB, Adelstein RS: The apparently negatively cooperative phosphorylation of smooth muscle myosin at low ionic strength is related to its filamentous state. J Biol Chem 258: 14181–14188, 1983.

    PubMed  CAS  Google Scholar 

  52. Aksoy MO, Murphy RA, Kamm KE: Role of Ca2+ and myosin light chain phoshorylation in regulation of smooth muscle. Am J. Physiol 242 (Cell Physiol) 11 C109–C116, 1982

    Google Scholar 

  53. Persechini A, Kamm DE, Stull JT: Different phosphorylated forms of myosin in conttacting tracheal smooth muscle. J Biol Chem 261: 6293–6299, 1986.

    PubMed  CAS  Google Scholar 

  54. Ikebe M, Hartshorne DJ: Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. J Biol Chem 260: 10027–10031, 1985.

    PubMed  CAS  Google Scholar 

  55. Ikebe M, Hartshorne DJ, Elzinga M: Identification, phosphorylation, and dephosphorylation of a second site for myosin light chain kinase on the 20,000-dalton light chain of smooth muscle myosin. J Biol Chem 261: 36–39, 1986.

    PubMed  CAS  Google Scholar 

  56. Haeberle JR, Trockman BA: Two-site phosphoryation of the 20,000 dalton myosin light chain of glycerinated porcine carotid artery smooth muscle. Biophys J 49: 389a, 1986.

    Google Scholar 

  57. Ledvora RF, Barany K, Vander Meulen DL, Barron JT, Barany M: Stretch-induced phosphorylation of the 20,000-dalton light chain of myosin in arterial smooth muscle. J Biol Chem 258: 14080–14083, 1983.

    PubMed  CAS  Google Scholar 

  58. Gagelmann M, Rüegg JC, DiSalvo J: Phosphorylation of the myosin light chains and satellite proteins in detergent-skinned arterial smooth muscle. Biochem Biophys Res Commun 120: 933–938, 1984.

    PubMed  CAS  Google Scholar 

  59. Noiman ES: Phosphorylation of smooth muscle myosin light chains by cAMP-dependent protein kinase. J Biol Chem 255: 11067–11070, 1980.

    PubMed  CAS  Google Scholar 

  60. Walsh MP, Persechini A, Hinkins S, Hartshorne DJ: Is smooth muscle myosin a substrate for the cAMP-dependent protein kinase? FEBS Lett 126: 107–110, 1981.

    PubMed  CAS  Google Scholar 

  61. Singh TJ, Akatsuka A, Huang K-P: Phosphorylation of smooth muscle myosin light chain by five different kinases. FEBS Lett 159: 217–220, 1983.

    PubMed  CAS  Google Scholar 

  62. Cheung WY: Cyclic 3’,5’-nucleotide phosphod-iestetase. Demonstration of an activator. Biochem Biophys Res Commun 38: 533–538, 1970.

    CAS  Google Scholar 

  63. Kakiuchi S, Yamazaki R, Nakajima H: Properties of a heat-stable phosphodiesterase activating factor isolated from brain extracts. Studies on cyclic 3’, 5’-nucleotide phosphodiesterase II. Proc Jpn Acad 46: 587–592, 1970.

    CAS  Google Scholar 

  64. Teo TS, Wang TH, Wang JH: Purification and properties of the protein activator of bovine heart cyclic adenosine 3’,5’-monophosphate phosphodiesterase. J Biol Chem 248: 588–595, 1973.

    PubMed  CAS  Google Scholar 

  65. Kretsinger RH: Sttucture and evolution of calcium-modulated proteins. CRC Crit Rev Biochem 8: 119–174, 1980.

    PubMed  CAS  Google Scholar 

  66. Cheung WY: Calmodulin plays a pivotal role in cellular regulation. Science 207: 19–27, 1980.

    PubMed  CAS  Google Scholar 

  67. Walsh MP, Hartshorne DJ: Calmodulin. In: Stephens NL (ed) Biochemistry of Smooth Muscle, Vol II. Boca Raton, FL: CRC Press, 1983, pp 1–84.

    Google Scholar 

  68. Dabrowska R, Aromatorio D, Sherry JMF, Hartshorne DJ: Composition of the myosin light chain kinase from chicken gizzard. Biochem Biophys Res Commun 78: 1263–1272, 1977.

    PubMed  CAS  Google Scholar 

  69. Klee CB: Conformational transition accompanying the binding of Ca2+ to the protein activator of 3’, 5’-cyclic adenosine monophosphate phosphodiesterase. Biochemistry 16: 1017–1024, 1977.

    PubMed  CAS  Google Scholar 

  70. LaPorte DC, Wierman BM, Storm DR: Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry 19: 3814–3819, 1980.

    PubMed  CAS  Google Scholar 

  71. Burgess WH, Schleicher M, Van Eldik LJ, Watter-son DM: Comparative studies of calmodulin. In: Cheung WY (ed) Calcium and Cell Function, Vol IV, New York: Academic Press, 1983, pp 209–261.

    Google Scholar 

  72. Babu YS, Sack JS, Greenhough TJ, Bugg CE, Means AR, Cook WJ: Three-dimensional structure of calmodulin. Nature (Lond) 315: 37–40, 1985.

    CAS  Google Scholar 

  73. Putkey JA, Ts’ui KF, Tanaka T, Lagacé L, Stein JP, Lai EC, Means AR: Chicken calmodulin genes. A species comparison of cDNA sequences and isolation of a genomic clone. J Biol Chem 258: 11864–11870, 1983.

    CAS  Google Scholar 

  74. Simmen RCM, Tanaka T, Ts’ui KF, Putkey JA, Scott MJ, Lai EC, Means AR: The structural organization of the chicken calmodulin gene. J Biol Chem 260: 907–912, 1985.

    CAS  Google Scholar 

  75. Maita T, Chen JI, Matsuda G: Amino-acid sequence of the 20,000-molecular-weight light chain of chicken gizzard-muscle myosin. Eur J Biochem 117: 417–424, 1981.

    PubMed  CAS  Google Scholar 

  76. Pearson RB, Jakes R, John M, Kendrick-Jones J, Kemp BE: Phosphorylation site sequence of smooth muscle myosin light chain (Mr = 20,000). FEBS Lett 168: 108–112, 1984.

    PubMed  CAS  Google Scholar 

  77. Kemp BE, Pearson RB, House C: Role of basic residues in the phosphorylation of synthetic peptides by myosin light chain kinase. Proc Natl Acad Sci USA 80: 7471–7475, 1983.

    PubMed  CAS  Google Scholar 

  78. Kemp BE, Pearson RB: Spatial requirements for location of basic residues in peptide substrates for smooth muscle myosin light chain kinase. J Biol Chem 260: 3355–3359, 1985.

    PubMed  CAS  Google Scholar 

  79. Pearson RB, Misconi LY, Kemp BE: Smooth muscle myosin kinase requires residues on the COOH-terminal side of the phosphorylation site. J Biol Chem 261: 25–27, 1986.

    PubMed  CAS  Google Scholar 

  80. Hardman JG: Cyclic nucleotides and regulation of vascular smooth muscle. J Cardiovasc Pharmacol 6: S639–S645, 1984.

    PubMed  Google Scholar 

  81. Sands H, Penberthy W, Meyer TA, Jorgensen R: Cyclic AMP-stimulated phosphorylation of bovine tracheal smooth muscle contractile and noncontrac-tile proteins. Biochim Biophys Acta 445: 791–801, 1976.

    PubMed  CAS  Google Scholar 

  82. Adelstein RS, Conti MA, Hathaway DR, Klee CB: Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3’,5’-monophosphate-dependent protein kinase. J Biol Chem 253: 8347–8350, 1978.

    PubMed  CAS  Google Scholar 

  83. Conti MA, Adelstein RS: The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3’,5’-cAMP-dependent protein kinase. J Biol Chem 256: 3178–3181, 1981.

    PubMed  CAS  Google Scholar 

  84. Pato MD, Adelstein RS: Purification and characterizationof a multisubunit phosphatase from turkey gizzard smooth muscle. J Biol Chem 258: 7047–7054, 1983.

    PubMed  CAS  Google Scholar 

  85. Foyt HL, Guerriero VJr, Means AR: Functional domains of chicken gizzard myosin light chain kinase. J Biol Chem 260: 7765–7774, 1985.

    PubMed  CAS  Google Scholar 

  86. Walsh MP: Limited proteolysis of smooth muscle myosin light chain kinase. Biochemistry 24: 3724–3730, 1985.

    PubMed  CAS  Google Scholar 

  87. Lukas TJ, Burgess WH, Prendergast FG, Lau W, Watterson DM: Calmodulin binding domains: Characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase. Biochemistry 25: 1458–1464, 1986.

    PubMed  CAS  Google Scholar 

  88. Blumenthal DK, Takio K, Edelman AM, Charbon-neau H, Titani K, Walsh KA, Krebs EG: Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proc Natl Acad Sei USA 82: 3187–3191, 1985.

    CAS  Google Scholar 

  89. Walsh MP, Dabrowska R, Hinkins S, Hartshorne DJ: Calcium-independent myosin light chain kinase of smooth mucle. Preparation by limited chymo-tryptic digestion of the Ca2+-dependent enzyme, purification and characterization. Biochemistry 21: 1919–1925,1982.

    CAS  Google Scholar 

  90. Nakamura S, Nonomura Y: Ca2+-independent gizzard myosin light chain kinase produced by cross-linking of the enzyme with calmodulin using glutaraldehyde. J Biochem (Tokyo) 99: 1359–1369, 1986.

    CAS  Google Scholar 

  91. Pato MD, Adelstein RS: Dephosphorylation of the 20,000-dalton light chain of myosin by two different phosphatases from smooth muscle. J Biol Chem 255: 6535–6538, 1980.

    PubMed  CAS  Google Scholar 

  92. Pato MD, Kerc E: Purification and characterization of a smooth muscle myosin phosphatase from turkey gizzards. J Biol Chem 260: 12359–12366, 1985.

    PubMed  CAS  Google Scholar 

  93. Werth DK, Haeberle JR, Hathaway DR: Purification of a myosin phosphatase from bovine aortic smooth muscle. J Biol Chem 257: 7306–7309, 1982.

    PubMed  CAS  Google Scholar 

  94. Onishi H, Umeda J, Uchiwa H, Watanabe S: Purification of gizzard myosin light-chain phosphatase, and reversible changes in the ATPase and superprecipitation activities of actomyosin in the presence of purified preparations of myosin light-chain phosphatase and kinase. J Biochem (Tokyo) 91: 265–271, 1982.

    CAS  Google Scholar 

  95. Sellers JR, Pato MD: The binding of smooth muscle myosin light chain kinase and phosphatases to actin and myosin. J Biol Chem 259: 7740–7746, 1984.

    PubMed  CAS  Google Scholar 

  96. Sobue K, Muramoto Y, Fujita M, Kakiuchi S: Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sei USA 78: 5652–5655, 1981.

    CAS  Google Scholar 

  97. Ngai PK, Walsh MP: Properties of caldesmon isolated from chicken gizzard. Biochem J 230: 695–707, 1985.

    PubMed  CAS  Google Scholar 

  98. Kakiuchi R, Inui M, Morimoto K, Kanda K, Sobue K, Kakiuchi S: Caldesmon, a calmodulin-binding, F-actin-interacting protein, is present in aorta, uterus and platelets. FEBS Lett 154: 351–356, 1983.

    PubMed  CAS  Google Scholar 

  99. Ban T, Ishimura K, Fujita H, Sobue K, Kakiuchi S: Immunocytochemical demonstration for caldesmon and actin in the striated and smooth muscle cells and non-muscular cells of various organs of rats. Acta Histochem Cytochem 17: 331–338, 1984.

    CAS  Google Scholar 

  100. Bretscher A, Lynch W: Identification and localization of immunoreactive forms of caldesmon in smooth and non-muscle cells: A comparison with the distributions of tropomyosin and α-actinin. J Cell Biol 100: 1656–1663, 1985.

    PubMed  CAS  Google Scholar 

  101. Ngai PK, Walsh MP: Detection of caldesmon in muscle and non-muscle tissues of the chicken using polyclonal antibodies. Biochem Biophys Res Commun 127: 533–539, 1985.

    PubMed  CAS  Google Scholar 

  102. Clark T, Ngai PK, Sutherland C, Gröschel-Stewart U, Walsh MP: Vascular smooth muscle caldesmon. J Biol Chem 261: 8028–8035, 1986.

    PubMed  CAS  Google Scholar 

  103. Btetscher A: Smooth muscle caldesmon. Rapid purification and F-actin cross-linking properties. J Biol Chem 259: 12873–12880, 1984.

    Google Scholar 

  104. Ngai PK, Carruthers CA, Walsh MP: Isolation of the native form of chicken gizzard myosin light-chain kinase. Biochem J 218: 863–870, 1984.

    PubMed  CAS  Google Scholar 

  105. Smith CWJ, Marston SB: Disassembly and reconstitution of the Ca2+-sensitive thin filaments of vascular smooth muscle. FEBS Lett 184: 115–119, 1985.

    PubMed  CAS  Google Scholar 

  106. Sobue K, Tanaka T, Kanda K, Ashino N, Kakiuchi S: Purification and characterization of caldesmon77: A calmodulin-binding protein that intetacts with actin filaments from bovine adrenal medulla. Proc Natl Acad Sci USA 82: 5025–5029, 1985.

    PubMed  CAS  Google Scholar 

  107. Fürst DO, Cross RA, DeMey J, Small RV: Caldesmon is an elongated, flexible molecule localized in the actomyosin domains of smooth muscle. EMBO J 5: 251–257, 1986.

    PubMed  Google Scholar 

  108. Dingus J, Hwo S, Btyan J: Identification by monoclonal antibodies and characterization of human platelet caldesmon. J Cell Biol 102: 1748–1757, 1986.

    PubMed  CAS  Google Scholar 

  109. Sobue K, Morimoto K, Inui M, Kanda K, Kakiuchi S: Control of actin-myosin interaction of gizzard smooth muscle by calmodulin-and caldesmon-linked flip-flop mechanism. Biomed Res 3: 188–196, 1982.

    CAS  Google Scholar 

  110. Sobue K, Muramoto Y, Fujita M, Kakiuchi S: Calmodulin-binding protein from chicken gizzard that interacts with F-actin. Biochem Int 2: 469–476, 1981.

    CAS  Google Scholar 

  111. Marston SB, Smith CWJ: The thin filaments of smooth muscles. J Muscle Res Cell Motility 6: 669–708, 1985.

    CAS  Google Scholar 

  112. Marston SB, Lehman W: Caldesmon is a Ca2+-regulatory component of native smooth-muscle thin filaments. Biochem J 231: 517–522, 1985.

    PubMed  CAS  Google Scholar 

  113. Lehman W: Caldesmon association with smooth muscle thin filaments isolated in the presence and absence of calcium. Biochim Biophys Acta 885: 88–90, 1986.

    PubMed  CAS  Google Scholar 

  114. Small JV, Fürst DO, DeMey J: Localization of filamin in smooth muscle. J Cell Biol 102: 210–220. 1986.

    PubMed  CAS  Google Scholar 

  115. Ngai PK, Walsh MP: Inhibition of smooth muscle actin-activated myosin Mg2+-ATPase activity by caldesmon. J Biol Chem 259: 13656–13659, 1984.

    PubMed  CAS  Google Scholar 

  116. Umekawa H, Hidaka H: Phosphorylation of caldesmon by protein kinase C. Biochem Biophys Res Commun 132: 56–62, 1985.

    PubMed  CAS  Google Scholar 

  117. Moody CJ, Marston SB, Smith CWJ: Bundling of actin filaments by aorta caldesmon is not related to its regulatory function. FEBS Lett 191: 107–112, 1985.

    PubMed  CAS  Google Scholar 

  118. Sobue K, Takahashi K, Tanaka T, Kanda K, Ashino N, Kakiuchi S, Maruyama K: Crosslinking of actin filaments is caused by caldesmon aggregates, but not by its dimets. FEBS Lett 182: 201–204, 1985.

    PubMed  CAS  Google Scholar 

  119. Galazkiewicz B, Mossakowska M, Osinska H, Dabrowska R: Polymerization of G-actin by caldesmon. FEBS Lett 184: 144–149, 1985.

    PubMed  CAS  Google Scholar 

  120. Somlyo AP: Excitation-contraction coupling and the ultrastructure of smooth muscle. Cite Res 57: 497–507, 1985.

    CAS  Google Scholar 

  121. Morgan JP, Morgan KG: Vascular smooth muscle: The first recorded Ca2+ transients. Pflügers Archiv 395: 75–77, 1982.

    PubMed  CAS  Google Scholar 

  122. Williams DA, Fay FS: Calcium transients and resting levels in isolated smooth muscle cells as monitored with quin 2. Am J Physiol 250: C779–C791, 1986.

    PubMed  CAS  Google Scholar 

  123. Sherry JMF, Gorecka A, Aksoy MO, Dabrowska R, Hartshorne DJ: Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin. Biochemistry 17: 4411–4418, 1978.

    PubMed  CAS  Google Scholar 

  124. Cassidy PS, Hoar PE, Kerrick WGL: Irreversible thiophosphorylation and activation of tension in functionally skinned rabbit ileum strips by [35S]ATPγS. J Biol Chem 254: 11148–11153, 1979.

    PubMed  CAS  Google Scholar 

  125. Hoar PE, Kerrick WGL, Cassidy PS: Chicken gizzard: Relation between calcium-activated phosphorylation and contraction. Sience 204: 503–506, 1979.

    CAS  Google Scholar 

  126. Cassidy PS, Kerrick WGL: Superprecipitation of gizzard actomyosin, and tension in gizzard muscle skinned fibers in the presence of nucleotides othet than ATP. Biochim Biophys Acta 705: 63–69, 1982.

    PubMed  CAS  Google Scholar 

  127. Sellers JR, Pato MD, Adelstein RS: Reversible phosphorylation of smooth muscle myosin, heavy mertomyosin, and platelet myosin. J Biol Chem 256: 13137–13142, 1981.

    PubMed  CAS  Google Scholar 

  128. DiSalvo J, Gifford D, Bialojan C, Rüegg JC: An aortic spontaneously active phosphatase dephos-photylates myosin and inhibits actin-myosin interaction. Biochem Biophys Res Commun 111: 906–911, 1983.

    CAS  Google Scholar 

  129. Rüegg JC, DiSalvo J, Paul RJ: Soluble relaxation factor from vascular smooth muscle: A myosin light chain phosphatase. Biochem Biophys Res Commun 106: 1126–1133, 1982.

    PubMed  Google Scholar 

  130. Hoar PE, Pato MD, Kerrick WGL: Myosin light chain phosphatase. Effect on the activation and relaxation of gizzard smooth muscle skinned fibers. J Biol Chem 260: 8760–8764, 1985.

    CAS  Google Scholar 

  131. Haeberle JR, Hathaway DR, DePaoli-Roach AA: Dephosphorylation of myosin by the catalytic sub-unit of a type-2 phosphatase produces relaxation of chemically skinned uterine smooth muscle. J Biol Chem 260: 9965–9968, 1985.

    PubMed  CAS  Google Scholar 

  132. Levin RM, Weiss B: Selective binding of antipsychotics and other psychoactive agents to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. J Pharmacol Exp Ther 208: 454–459, 1979.

    PubMed  CAS  Google Scholar 

  133. Hidaka H, Asano M, Tanaka T: Activity-structure relationship of calmodulin antagonists. Naphthale-nesulfonamide derivatives. Mol Pharmacol 20: 571–578, 1981.

    CAS  Google Scholar 

  134. Hidaka H, Naka M, Yamaki T: Effect of novel specific myosin light chain kinase inhibitors on Ca2+-activated Mg2+-ATPase of chicken gizzard actomyosin. Biochem Biophys Res Commun 90: 694–699, 1979.

    PubMed  CAS  Google Scholar 

  135. Hidaka H, Yamaki T, Naka M, Tanaka T, Hayashi H, Kobayashi R: Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol Pharmacol 17: 66–72, 1980.

    PubMed  CAS  Google Scholar 

  136. Sheterline P: Trifluoperazine can distinguish between myosin light chain kinase-linked and troponin C-linked control of actomyosin interaction by Ca2+. Biochem Biophys Res Commun 93: 194–200, 1980.

    PubMed  CAS  Google Scholar 

  137. Kerrick WGL, Hoar PE, Cassidy PS: Calcium-activated tension: The role of myosin light chain phosphorylation. Fed Proc 39: 1558–1563, 1980.

    PubMed  CAS  Google Scholar 

  138. Sparrow MP, Mrwa U, Hofmann F, Rüegg JC: Calmodulin is essential for smooth muscle contraction. FEBS Lett 125: 141–145, 1981.

    PubMed  CAS  Google Scholar 

  139. Barron JT, Barany M, Barany K, Storti RV: Reversible phosphorylation and dephosphorylation of the 20,000-dalton light chain of myosin during the contraction-relaxation-contraction cycle of arterial smooth muscle. J Biol Chem 255: 6238–6244, 1980.

    PubMed  CAS  Google Scholar 

  140. Kanamori M, Naka M, Asano M, Hidaka H: Effects of N-(6-aminohexyl)-5-chloro- 1-naphthalenesulfona-mide and other calmodulin antagonists (calmodulin interacting agents) on calcium-induced contraction of rabbit aortic strips. J Pharmacol Exp Ther 217: 494–499, 1981.

    PubMed  CAS  Google Scholar 

  141. Asano M, Suzuki Y, Hidaka H: Effects of various calmodulin antagonists on contraction of rabbit aortic strips. J Pharmacol Exp Ther 220: 191–196, 1982.

    PubMed  CAS  Google Scholar 

  142. Silver PJ, Stull JT: Effects of the calmodulin antagonist, fluphenazine, on phosphorylation of myosin and Phosphorylase in intact smooth muscle. Mol Pharmacol 23: 665–670, 1983.

    PubMed  CAS  Google Scholar 

  143. Crosby ND, Diamond J: Effects of phenothiazines on calcium induced contractions of chemically skinned smooth muscle. Proc West Pharmacol Soc 23: 335–338, 1980.

    PubMed  CAS  Google Scholar 

  144. Hidaka H, Asano M, Iwadare S, Matsumoto I, Totsuka T, Aoki M: A novel vascular relaxing agent, N - (6 - aminohexy 1) - 5 - chloro -1 - naphthalenesulfona -mide which affects vascular smooth muscle actomyosin. J Pharmacol Exp Ther 207: 8–15, 1978.

    PubMed  CAS  Google Scholar 

  145. Hidaka H, Yamaki T, Totsuka T, Asano M: Selective inhibitors of Ca2+-binding modulator of phosphodiesterase produce vascular relaxation and inhibit actin-myosin interaction. Mol Pharmacol 15: 49–59, 1979.

    PubMed  CAS  Google Scholar 

  146. Walsh MP, Bridenbaugh R, Kerrick WGL, Hart-shorne DJ: Gizzard Ca2+-independent myosin light chain kinase: Evidence in favor of the phosphorylation theory. Fed Proc 42: 45–50, 1983.

    PubMed  CAS  Google Scholar 

  147. Walsh MP, Bridenbaugh R, Hartshorne DJ, Kerrick WGL: Phosphorylation-dependent activated tension in skinned gizzard muscle fibers in the absence of Ca2+. J Biol Chem 257: 5987–5990, 1982.

    PubMed  CAS  Google Scholar 

  148. Mrwa U, Güth K, Rüegg JC, Paul RJ, Böström S, Barsotti R, Hartshorne D: Mechanical and biochemical characterization of the contraction elicited by a calcium-independent myosin light chain kinase in chemically skinned smooth muscle. Experientia 41: 1002–1005, 1985.

    PubMed  CAS  Google Scholar 

  149. Cande WZ, Tooth PJ, Kendrick-Jones J: Regulation of contraction and thick filament assembly-disassembly in glycerinated vertebrate smooth muscle cells’. J Cell Biol 97: 1062–1071, 1983.

    PubMed  CAS  Google Scholar 

  150. Suzuki H, Onishi H, Takahashi K, Watanabe S: Structure and function of chicken gizzard myosin. J Biochem (Tokyo) 84: 1529–1542, 1978.

    CAS  Google Scholar 

  151. Suzuki H, Kamata T, Onishi H, Watanabe S: Adenosine triphosphate-induced reversible change in the conformation of chicken gizzard myosin and heavy meromyosin. J Biochem (Tokyo) 91: 1699–1705, 1982.

    CAS  Google Scholar 

  152. Trybus KM, Huiatt TW, Lowey S: A bent mono-meric conformation of myosin from smooth muscle. Proc Natl Acad Sei USA 79: 6151–6155, 1982.

    CAS  Google Scholar 

  153. Craig R, Smith R, Kendrick-Jones J: Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature (Lond) 302: 436–439, 1983.

    CAS  Google Scholar 

  154. Onishi H, Wakabayashi T: Electron microscopic studies of myosin molecules from chicken gizzard muscle I: The formation of the intramolecular loop in the myosin tail. J Biochem (Tokyo) 92: 871–879, 1982

    CAS  Google Scholar 

  155. Ikebe M, Hinkins S, Hartshorne DJ: Correlation of enzymatic properties and conformation of smooth muscle myosin. Biochemistry 22: 4580–4587, 1983.

    PubMed  CAS  Google Scholar 

  156. Ikebe M, Hartshorne DJ: Conformation-dependent proteolysis of smooth-muscle myosin. J Biol Chem 259: 11639–11642, 1984.

    PubMed  CAS  Google Scholar 

  157. Dillon PF, Aksoy MO, Driska SP, Murphy RA: Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science 211: 495–497, 1981.

    PubMed  CAS  Google Scholar 

  158. Aksoy MO, Mras S, Kamm KE, Murphy RA: Ca2+, cAMP and changes in myosin phosphorylation during contraction of smooth muscle. Am J Physiol 245: C255–C270, 1983.

    PubMed  CAS  Google Scholar 

  159. Aksoy MO, Stewart GJ, Harakal C: Myosin light chain phosphorylation and evidence for latchbridge formation in norepinephrine stimulated canine veins. Biochem Biophys Res Commun 135: 735–741, 1986.

    PubMed  CAS  Google Scholar 

  160. Butler TM, Siegman MJ, Mooers SU: Chemical energy usage during shortening and work production in mammalian smooth muscle. Am J Physiol 244: C234–C242, 1983.

    PubMed  CAS  Google Scholar 

  161. Gerthoffer WT, Murphy RA: Myosin phosphorylation and regulation of cross-bridge cycle in tracheal smooth muscle. Am J Physiol 244: C182–C187, 1983.

    PubMed  CAS  Google Scholar 

  162. Silvet PJ, Stull JT: Regulation of myosin light chain and Phosphorylase phosphorylation in tracheal smooth muscle. J Biol Chem 257: 6145–6150, 1982.

    Google Scholar 

  163. Chatterjee M, Murphy RA: Calcium-dependent stress maintenance without myosin phosphorylation in skinned smooth muscle. Science 221: 464–466, 1983.

    PubMed  CAS  Google Scholar 

  164. Carsten ME: Uterine smooth muscle: Troponin. Arch Biochem Biophys 147: 353–357, 1971.

    PubMed  CAS  Google Scholar 

  165. Sparrow MP, van Bockxmeer FM: Arterial tropomyosin and a relaxing protein fraction from vascular smooth muscle. Comparison with skeletal tropomyosin and troponin. J Biochem (Tokyo) 72: 1075–1980, 1972.

    CAS  Google Scholar 

  166. Ebashi S, Toyo-oka T, Nonomura Y: Gizzard troponin. J Biochem (Tokyo) 78: 859–861, 1975.

    CAS  Google Scholar 

  167. Ito N, Hotta K: Regulatory protein of bovine tracheal smooth muscle. J Biochem (Tokyo) 80: 401–403, 1976.

    CAS  Google Scholar 

  168. Head JF, Weeks RA, Perry SV: Affinity-chromato-graphic isolation and some properties of troponin C from different muscle types. Biochem J 161: 465–471, 1977.

    PubMed  CAS  Google Scholar 

  169. Grand RJA, Perry SV, Weeks RA: Troponin C-like proteins (calmodulins) from mammalian smooth muscle and other tissues. Biochem J 177: 521–529, 1979.

    PubMed  CAS  Google Scholar 

  170. Marston SB, Trevett RM, Walters M: Calcium ion-regulated thin filaments from vasculat smooth muscle. Biochem J 185: 355–365, 1980.

    PubMed  CAS  Google Scholar 

  171. riska SP, Hartshorne DJ: The contractile proteins of smooth muscle. Properties and components of a Ca2+-sensitive actomyosin from chicken gizzard. Arch Biochem Biophys 167: 203–212, 1975.

    Google Scholar 

  172. Ebashi S, Mikawa T, Hirata M, Toyo-oka T, Nonomura Y: Regulatory proteins of smooth muscle. In: Casteels R, Godfraind T, Rüegg JC (eds) Excita-tion-Conttaction Coupling in Smooth Muscle. Amsterdam: Elsevier/North Holland Biomedical, 1977, pp 325–334.

    Google Scholar 

  173. Hirata M, Mikawa T, Nonomura Y, Ebashi S: Ca2+regulation in vascular smooth muscle. J Biochem (Tokyo) 82: 1793–1796, 1977.

    PubMed  CAS  Google Scholar 

  174. Ebashi S: Regulation of muscle contraction. Proc Roy Soc Lond B Biol Sei 207: 259–286, 1980.

    CAS  Google Scholar 

  175. Nonomura Y, Ebashi S: Calcium regulatory mechanism in vertebtate smooth muscle. Biomed Res 1: 1–14, 1980.

    CAS  Google Scholar 

  176. Chacko S, Heaslip RJ, Ebashi S: The effect of leiotonin fraction on stably phosphorylated smooth muscle myosin. Biochem Biophys Res Commun 130: 286–292, 1985.

    PubMed  CAS  Google Scholar 

  177. Sobieszek A, Small JV: Mysoin-linked calcium regulation in vertebtate smooth muscle. J Mol Biol 101: 75–92, 1976.

    Google Scholar 

  178. Litten RA III, Solaro RJ, Ford GD: Properties of the calcium-sensitive components of bovine artetial actomyosin. Arch Biochem Biophys 182: 24–32, 1977.

    CAS  Google Scholar 

  179. Hirata M, Mikawa T, Nonomura Y, Ebashi S: Ca2+ regulation in vascular smooth muscle. II. Ca2+ binding of aorta leiotonin. J Biochem (Tokyo) 87: 369–378, 1980.

    PubMed  CAS  Google Scholar 

  180. Ikebe M, Hartshorne DJ: Effects of Ca2+ on the conformation and enzymatic activity of smooth muscle myosin. J Biol Chem 260: 13146–13153, 1985.

    PubMed  CAS  Google Scholar 

  181. Kaminski EA, Chacko S: Effects of Ca2+ and Mg2+ on the actin-activated ATP hydrolysis by phosphorylated heavy meromyosin from arterial smooth muscle. J Biol Chem 259: 9104–9108, 1984.

    PubMed  CAS  Google Scholar 

  182. Nag S, Seidel JC: Dependence on Ca2+ and tropomyosin of the actin-activated ATPase activity of phosphorylated gizzard myosin in the presence of low concentrations of Mg2+. J Biol Chem 258: 6444–6449, 1983.

    PubMed  CAS  Google Scholar 

  183. Rees DD, Frederiksen DW: Calcium regulation of porcine aottic myosin. J Biol Chem 256: 357–364, 1981.

    PubMed  CAS  Google Scholar 

  184. Nishizuka Y: The role of protein kinase C in cell sutface signal transduction and turnout promotion. Nature (Lond) 308: 693–698, 1984

    CAS  Google Scholar 

  185. Berridge MJ, Irvine RF: Inositol trisphosphate, a novel second messenget in cellular signal transduction. Natute (Lond) 312: 315–321, 1984

    CAS  Google Scholar 

  186. Endo T, Naka M, Hidaka H: Ca2+-phospholipid-dependent phosphorylation of smooth muscle myosin. Biochem Biophys Res Commun 105: 942–948, 1982.

    PubMed  CAS  Google Scholar 

  187. Nishikawa M, Hidaka H, Adelstein RS:Phosphorylation of smooth muscle heavy meromyosin by calcium-activated,phospholipid-dependent protein kinase. J Biol Chem 258: 14069–14072,1983.

    PubMed  CAS  Google Scholar 

  188. Nishikawa M, Sellers JR, Adelstein RS, Hidaka H:Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J Biol Chem 259: 8808–8814, 1984.

    PubMed  CAS  Google Scholar 

  189. Naka M, Nishikawa M,Adelstein RS, Hidaka H: Phorbol estet-induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains. Nature (Lond) 306: 490–492, 1983.

    CAS  Google Scholar 

  190. Itoh T, Kanmura Y, Kuriyama H, Sumimoto K: Aphorbol ester has dual actions on the mechanical response in the rabbit mesenteric and porcine coronary arteries. J Physiol 375: 515–534,1986.

    PubMed  CAS  Google Scholar 

  191. Baraban JM, Gould RJ, Peroutka SJ, Snyder SH: Phorbol ester effects on neurotransmission: Interaction with neurotransmitters and calcium in smooth muscle. Proc Natl Acad Sei USA 82: 604–607, 1985.

    CAS  Google Scholar 

  192. Park S, Rasmussen H:Activation of tracheal smooth muscle contraction: Synergism between Ca2+ and activators of protein kinase C. Proc Natl Acad Sci USA 82: 8835–8839, 1985.

    PubMed  CAS  Google Scholar 

  193. Menkes H, Baraban JM, Snyder SH: Protein kinase C regulates smooth muscle tension in guinea-pig trachea and ileum. Eur J Pharmacol 122: 19–27, 1986.

    PubMed  CAS  Google Scholar 

  194. Ikebe M, Inagaki M, Kanamaru K, Hidaka H:Phosphorylation of smooth muscle myosin light chain kinase by Ca2+-activated,phospholipid-dependent protein kinase. J Biol Chem 260: 4547–4550,1985.

    PubMed  CAS  Google Scholar 

  195. Nishikawa M, Shirakawa S, Adelstein RS: Phosphorylation of smooth muscle myosin light chain kinase by protein kinase C. J Biol Chem 260: 8978–8983, 1985.

    PubMed  CAS  Google Scholar 

  196. Small JV, Sobieszek A: Studies on the function and composition of the 10 nm (100-A) filaments of vertebrate smooth muscle. J Cell Sei 23: 243–268, 1977.

    CAS  Google Scholar 

  197. Lazarides E, Hubbard BD: Immunological characterisation of the subunit of the 100 Ä filaments from muscle cells. Proc Natl Acad Sei USA 73: 4344–4348, 1976.

    CAS  Google Scholar 

  198. Hubbard BD, Lazarides E: The co-purification of actin and desmin from chicken smooth muscle and their co-polymerization in vitro to intermediate filaments. J Cell Biol 80: 166–182, 1979.

    PubMed  CAS  Google Scholar 

  199. Lazarides E, Balzer DR: Specificity of desmin to avian and mammalian muscle cells. Cell 14: 429–438, 1978.

    PubMed  CAS  Google Scholar 

  200. O’Shea JM, Robson RM, Huiatt TW, Hartzer MK, Stromer MH: Purified desmin from adult mammalian skeletal muscle: A peptide mapping comparison with desmins from adult mammalian and avian smooth muscle. Biochem Biophys Res Commun 89: 972–980, 1979.

    PubMed  Google Scholar 

  201. O’Connor CM, Balzer DR, Lazarides E:Phosphorylation of subunit proteins of intermediate filaments from chicken muscle and non-muscle cells. Proc Natl Acad Sei USA 76: 819–823, 1979.

    Google Scholar 

  202. Frank ED, Warren L: Aortic smooth muscle cells contain vimentin instead of desmin. Proc Natl Acad Sei USA 78: 3020–3024, 1981.

    CAS  Google Scholar 

  203. Gabbiani G, Schmid E, Winter S, Chaponnier C, De Chastonay C,Vandekerckhove J, Weber K, Franke WW: Vascular smooth muscle cells differ from other smooth muscle cells: Predominance of vimentin filaments and a specific α-type actin. Proc Natl Acad Sei USA 78: 298–302, 1981.

    CAS  Google Scholar 

  204. Wang K, Ash JF, Singer SJ: Filamin, a new high molecular weight protein found in smooth muscle and nonmuscle cells. Proc Natl Acad Sei USA 72: 4483–4486, 1975.

    CAS  Google Scholar 

  205. Wang K: Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells.Purification and properties of chicken gizzard filamin. Biochemistry 16:1857–1865, 1977.

    CAS  Google Scholar 

  206. Nunnally MH, Powell LD,Craig SW: ReConstitution and regulation of actin gel-sol transformation with purified filamin and villin. J Biol Chem 256: 2083–2086,1981.

    CAS  Google Scholar 

  207. Davies PJA, Wallach D, Willingham M, Pastan I, Lewis MS: Self-association of chicken gizzard filamin and heavy merofilamin. Biochemistry 19:1366–1372, 1980.

    PubMed  CAS  Google Scholar 

  208. Davies PJA, Wallach D,Willingham MC, Pastan I, Yamaguchi M, Robson RM: Filamin-actin interaction. J Biol Chem 253: 4036–4042, 1978.

    CAS  Google Scholar 

  209. Suzuki A, Göll DE, Singh I, Allan RE,Robson RM, Stromer MH: Some properties of purified skeletal muscle α-actinin. J Biol Chem 251: 6860–6870, 1976.

    PubMed  CAS  Google Scholar 

  210. Jockusch BM, Isenberg G: Interaction of α-actinin and vinculin with actin: Opposite effects on filament network formation. Proc Natl Acad Sei USA 78: 3005–3009, 1981.

    CAS  Google Scholar 

  211. Goll DE, Suzuki A, Temple J, Holmes GR: Studies on purified α-actinin. I. Effect of temperature and tropomyosin on the α-actinin/F-actin interaction. J Mol Biol 67: 469–488, 1972.

    CAS  Google Scholar 

  212. Geiger B, Tokuyasu KT, Dutton AH, Singer SJ: Vinculin, an intracellular protein localized at specialized sites where microfilament bundles terminate at cell membranes. Proc Natl Acad Sci USA 77:4127–4131,1980

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Walsh, M.P. (1989). Contractile Proteins of Smooth Muscle. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 90. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0873-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0873-7_42

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8222-8

  • Online ISBN: 978-1-4613-0873-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics