Rheological Properties of Cereal Proteins

  • Ann-Charlotte Eliasson


The protein content of intact cereals ranges from about 5% in millet to over 15% in oat (Wieser et al., 1980). The protein content of wheat flour can vary from 7% to 17% (Redman, 1971). Besides contributing to the nutritional value of the cereal, proteins also give functional properties to foods. Among the cereal proteins, effects on functional properties are most evident in the case of wheat proteins, due to the unique viscoelasticity of gluten. Similar properties are shown to only a very small extent by proteins in rye and barley, and not at all by proteins in the other cereals. It is not surprising, therefore, that so much work has been done to find out what makes the wheat proteins unique.


Rheological Property Durum Wheat Intrinsic Viscosity Wheat Variety Gluten Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aranyi, C., and Hawrylewicz, E. J. 1972. Preparation and isolation of acid-catalyzed hydrolysates from wheat gluten. J. Agric. Food Chem. 20:670–675.Google Scholar
  2. Bale, R., and Muller, H. G. 1970. Application of the statistical theory of rubber elasticity to the effect of heat on wheat gluten. J. Food Technol. 5:295–300.Google Scholar
  3. Batey, I. L. 1980. Chemical modification as a probe of gluten structure. Ann. Technol. Agric. 29:363–375.Google Scholar
  4. Bartoszewicz, K., Kaczkowski, J., and Liss, W. 1972. Hydrodynamic properties of gluten and glutenin obtained from flour of different baking quality. Bull. Acad. Pol. Sci. Ser. Sci. Biol. 20:827–831.Google Scholar
  5. Beckwith, A. C., Nielsen, H.-C., Wall, J. S., and Huebner, F. R. 1966. Isolation and characterization of a high-molecular-weight protein from wheat gliadin. Cereal Chem. 43:14–28.Google Scholar
  6. Beckwith, A. C, and Wall, J. S. 1966. Reduction and reoxidation of wheat glutenin. Biochim. Biophys. Acta 130:155–162.Google Scholar
  7. Beckwith, A. C., Wall, J. S., and Dimler, R. J. 1963. Amide groups as interaction sites in wheat gluten proteins: effects of amide-ester conversion. Arch. Biochem. Biophys. 103:319–330.Google Scholar
  8. Beckwith, A. C., Wall, J. S., and Jordan, R. W. 1965. Reversible reduction and reoxidation of the disulfide bonds in wheat gliadin. Arch. Biochem. Biophys. 112:16–24.Google Scholar
  9. Belitz, H.-D., Kieffer, R., Seilmeier, W., and Wieser, H. 1986. Structure and function of gluten proteins. Cereal Chem. 63:336–341.Google Scholar
  10. Belitz, H.-D., Kim, J.-J., Kieffer, R., Seilmeier, W., Werbeck, U., and Wieser, H. 1987. Separation and characterization of reduced glutelins from different wheat varieties and importance of the gliadin/glutelin ratio for the strength of gluten. In Proceedings of the 3rd International Workshop on Gluten Proteins, ed. R. Lasztity and F. Békés, pp. 189–205. Singapore: World Scientific.Google Scholar
  11. Bernardin, J. E. 1975. Rheology of concentrated gliadin solutions. Cereal Chem. 52(3, Pt. II): 136–145.Google Scholar
  12. Bernardin, J. E. 1978a. Effect of shear on the nematic mesophase of the wheat storage protein A-gliadin. J. Text. Stud. 9:283–297.Google Scholar
  13. Bernardin, J. E. 1978b. Gluten protein interaction with small molecules and ions—the control of flour properties. Bakers’ Dig. 52(4):20–23.Google Scholar
  14. Bernardin, J. E., and Kasarda, D. D. 1973a. Hydrated protein fibrils from wheat endosperm. Cereal Chem. 50:529–536.Google Scholar
  15. Bernardin, J. E., and Kasarda, D. D. 1973b. The microstructure of wheat protein fibrils. Cereal Chem. 50:735–745.Google Scholar
  16. Bietz, J. A. 1979. Recent advances in the isolation and characterization of cereal proteins. Cereal Foods World 24:199–207.Google Scholar
  17. Bietz, J. A., and Wall, J. S. 1980. Identity of high molecular weight gliadin and ethanol-soluble glutenin subunits of wheat: relation to gluten structure. Cereal Chem. 57:415–421.Google Scholar
  18. Bohlin, L. 1980. A theory of flow as a cooperative phenomenon. J. Colloid Interface Sci. 74:423–434.Google Scholar
  19. Bohlin, L., and Carlson, T. L. G. 1981. Shear stress relaxation of wheat flour dough and gluten. Colloids Surfaces 2:59–69.Google Scholar
  20. Bohlin, L., and Fontell, K. 1978. Flow properties of lamellar liquid crystalline lipid-water systems. J. Colloid Interface Sci. 67:272–283.Google Scholar
  21. Bushuk, W. 1984. Functionality of wheat proteins in dough. Cereal Foods World 29:162–164.Google Scholar
  22. Butaki, R. C., and Dronzek, B. 1979a. Comparison of gluten properties of flour wheat varieties. Cereal Chem. 56:159–161.Google Scholar
  23. Butaki, R. C., and Dronzek, B. 1979b. Effect of protein content and wheat variety on relative viscosity, solubility and electrophoretic properties of gluten proteins. Cereal Chem. 56:162–165.Google Scholar
  24. Carlson, T. L.-G. 1981. Law and order in wheat flour dough. Colloidal aspects of the wheat flour dough and its lipid and protein constituents in aqueous media. Thesis. Lund: Lund University.Google Scholar
  25. Chung, O. K. 1986. Lipid-protein interactions in wheat flour dough, gluten, and protein fractions. Cereal Foods World 31:242–256.Google Scholar
  26. Cluskey, J. E., Taylor, N. W., Carley, H. and Senti, F. R. 1961. Electrophoretic composition and intrinsic viscosity of glutens from different varieties of wheat. Cereal Chem. 38:325–335.Google Scholar
  27. Cole, E. W., Kasarda, D. D., and Lafiandra, D. 1984. The conformational structure of A-gliadin. Intrinsic viscosities under conditions approaching the native state and under denaturing conditions. Biochem. Biophys. Acta 787:244–251.Google Scholar
  28. Cole, E. W., Torres, J. V., and Kasarda, D. D. 1983. Aggregation of A-gliadin: gel permeation chromatography. Cereal Chem. 60:306–310.Google Scholar
  29. Criddle, D. W. 1960. The viscosity and elasticity of interfaces. In Rheology Theory and Applications, Vol. 3, ed. F. R. Eirich, pp. 429–442. New York: Academic Press.Google Scholar
  30. Cumming, D. B., and Tung, M. A. 1975. Dynamic shear behavior of commercial wheat gluten. Can Inst. Food Sci. Technol. J. 8:206–210.Google Scholar
  31. Dalek, V., Liss, W., and Kacskowski, J. 1970. Indexes of the degree of denaturation in wheat gluten. Bull. Acad. Polon. Ser. Sci. Biol. 18:743–747.Google Scholar
  32. Damidaux, R., Autran, J. C., and Feillet, P. 1980. Gliadin electrophoregrams and measurements of gluten viscoelasticity in durum wheats. Cereal Foods World 25:754–756.Google Scholar
  33. Danno, G., and Hoseney, R. C. 1982. Effects of dough mixing and rheologically active compounds on relative viscosity of wheat proteins. Cereal Chem. 59:196–198.Google Scholar
  34. Dexter, J. E., and Matsuo, R. R. 1980. Relationship between durum wheat protein properties and pasta dough rheology and spaghetti cooking quality. J. Agric. Food Chem. 28:899–902.Google Scholar
  35. Doguchi, M., and Hlynka, I. 1967. Rheological properties of crude gluten mixed in the farinograph. Cereal Chem. 44:561–575.Google Scholar
  36. Dreese, P. C., Faubion, J. M., and Hoseney, R. C. 1988. The effect of different heating and washing procedures on the dynamic rheological properties of wheat gluten. Cereal Foods World 33:225–228.Google Scholar
  37. Eliasson, A.-C, and Hegg, P.-O. 1980. Thermal stability of wheat gluten. Cereal Chem. 57:436–437.Google Scholar
  38. Ewart, J. A. D. 1968a. Fractional extraction of cereal flour proteins. J. Sci. Food Agric. 19:241–245.Google Scholar
  39. Ewart, J. A. D. 1968b. Hypothesis for the structure and rheology of glutenin. J. Sci. Food Agric. 19:617–623.Google Scholar
  40. Ewart, J. A. D. 1972a. A modified hypothesis for the structure and rheology of glutelins. J. Sci. Food Agric. 23:687–699.Google Scholar
  41. Ewart, J. A. D. 1972b. Recent research and dough viscoelasticity. Bakers’ Dig. 46(4):22–26, 28.Google Scholar
  42. Ewart, J. A. D. 1977. Re-examination of the linear glutenin hypothesis. J. Sci. Food Agric. 28:191–199.Google Scholar
  43. Ewart, J. A. D. 1979. Glutenin structure. J. Sci. Food Agric. 30:482–492.Google Scholar
  44. Ewart, J. A. D. 1980. Loaf volume and the intrinsic viscosity of glutenin. J. Sci Food Agric. 31:1323–1336.Google Scholar
  45. Ewart, J. A. D. 1988. Studies on disulfide bonds in glutenin. Cereal Chem. 65:95–100.Google Scholar
  46. Field, J. M., Tatham, A. S., Baker, A. M., and Shewry, P. R. 1986. The structure of C-hordein. FEBS Lett. 200:76–80.Google Scholar
  47. Field, J. M., Tatham, A. S., and Shewry, P. R. 1987. Determination of prolamin configuration and dimensions by viscometric analysis. In Proceedings of the 3rd International Workshop on Gluten Proteins, ed. R. Lasztity and F. Békés, pp. 478–489. Singapore: World Scientific.Google Scholar
  48. Frisch, H. L., and Simha, R. 1956. The viscosity of colloidal suspensions and macro-molecular solutions. In Rheology Theory and Applications, Vol. 1, ed. F. R. Eirich, pp. 525–613. New York: Academic Press.Google Scholar
  49. Funt Bar-David, C. B., and Lerchenthal, CH. H. 1975. Rheological and thermodynamic properties of gluten gel. Cereal Chem. 52:154r–169r.Google Scholar
  50. Gabor, R., Täufel, A., and Ruttloff, H. 1982a. Veränderungen der molmassen von Weizenkleberproteinen nach schwacher Proteolyse. Z. Lebensm. Unters. Forsch. 175:399–402.Google Scholar
  51. Gabor, R., Täufel, A., and Ruttloff, H. 1982b. Zur Wirkungsweise verschiedener mikrobieller Proteasepräparate auf Weizengluten und-mehl. Die Nahrung 26:37–46.Google Scholar
  52. Grant, D. R. 1973. Modification of wheat flour proteins with succinic anhydride. Cereal Chem. 50:417–428.Google Scholar
  53. Graveland, A., Bosveld, P., Lichtendonk, W. J., Marseille, J. P., Moonen, J. H. E., and Scheepstra, A. 1985. A model for the molecular structure of the glutenins from wheat flour. J. Cereal Sci. 3:1–16.Google Scholar
  54. Graveland, A., and Henderson, M. H. 1987. Structure and functionality of gluten proteins. In Proceedings of the 3rd International Workshop on Gluten Proteins, ed. R. Lasztity and F. Békés, pp. 238–246. Singapore: World Scientific.Google Scholar
  55. Greenwood, C. T., and Ewart, J. A. D. 1975. Hypothesis for the structure of glutenin in relation to rheological properties of gluten and dough. Cereal Chem. 52(3, Pt II): 146–153.Google Scholar
  56. Grosskreutz, J. C. 1961. A lipoprotein model of wheat gluten structure. Cereal Chem. 38:336–348.Google Scholar
  57. Hamauzu, Z., and Yonezawa, D. 1971. Behaviors of glutenin in several kinds of dispersing solvents. Bull. Univ. Osaka Pref. Ser. B. 23:1–7.Google Scholar
  58. Heaps, P. W., Webb, T., Rusell Eggitt, P. W., and Coppock, J. B. M. 1968. Rheological testing of wheat glutens and doughs. Chem. Ind. (London) 32:1095–1096.Google Scholar
  59. Hermansson, A. M., and Larsson, K. 1986. The structure of gluten gels. Food Microstruct. 5:233–239.Google Scholar
  60. Hibberd, G. E. 1970. Dynamic viscoelastic behavior of wheat flour doughs. III. The influence of the starch granules. Rheol. Acta 9:501–505.Google Scholar
  61. Hoseney, R. C., Dreese, P. C., Doescher, L. C., and Faubion, J. M. 1987. Thermal properties of gluten. In Proceedings of the 3rd International Workshop on Gluten Proteins, ed. R. Lasztity and F. Békés, pp. 518–528. Singapore: World Scientific.Google Scholar
  62. Hoseney, R. C., Zeleznak, K., and Lai, C. S. 1986. Wheat gluten: a glassy polymer. Cereal Chem. 63:285–286.Google Scholar
  63. Inda, A. E., and Rha, C. 1981. Rupture properties of wheat gluten in simple tension: the role of hydrogen bonds. J. Food Sci. 47:177–180.Google Scholar
  64. Jeanjean, M. F., Damidaux, R., and Feillet, P. 1980. Effect of heat treatment on protein solubility and viscoelastic properties of wheat gluten. Cereal Chem. 57:325–331.Google Scholar
  65. Kacskowski, J., Vakar, A. B., Demidov, V. S., and Zabrodina, T. M. 1968. Influence of deuterated water on the viscosimetric properties of wheat gluten dispersions. Bull. Acad. Pol. Sci. Ser. Sci. Biol. 16:473–478.Google Scholar
  66. Khan, K., and Bushuk, W. 1979. Studies of glutenin. XII. Comparison by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of unreduced and reduced glutenin from various isolation and purification procedures. Cereal Chem. 56:63–68.Google Scholar
  67. Kieffer, R., Kim, J.-J., and Belitz, H.-D. 1981. Zugversuche mit Weizenkleber im Mikromass-stab. Z. Lebensm. Unters. Forsch. 172:190–192.Google Scholar
  68. Kieffer R., Kim, J.-J., and Belitz, H.-D. 1983. Einfluss niedermolekularer ionischer Verbindungen auf die Löslichkeit und die rheologischen Eigenschaften von Weizenkleber. Z. Lebensm. Unters. Forsch. 176:176–182.Google Scholar
  69. Kieffer, R., Kim, J., Kempf, M., Belitz, H.-D., Lehmann, J., Sprössler, B., and Best, E. 1982. Untersuchungen rheologischer Eigenschaften von Teig und Kleber aus Weizenmehl durch Capillar-viscosimetrie. Z. Lebensm. Unters. Forsch. 174:216–221.Google Scholar
  70. Kinsella, J. E., and Hale, M. L. 1984. Hydrophobie associations and gluten consistency: effect of specific anions. J. Agric. Food Chem. 32:1054–1056.Google Scholar
  71. Kobrehel, K., and Bushuk, W. 1977. Studies of glutenin. X. Effect of fatty acids and their sodium salts on solubility in water. Cereal Chem. 54:833–839.Google Scholar
  72. Kruger, J. E. 1971. Effects of proteolytic enzymes on gluten as measured by a stretching test. Cereal Chem. 48:121–132.Google Scholar
  73. Krull, L. H., and Wall, J. S. 1969. Relationship of amino acid composition and wheat protein properties. Bakers’Dig. 43(4): 30–39.Google Scholar
  74. Kwa, W. H. W., Tock, R. W., and Osman, E. G. 1976. The effects of selected sugars on the rheological properties of rehydrated vital gluten. Proc. Iowa Acad. Sci. 83: 28–34.Google Scholar
  75. Lagudah, E. S., O’Brien, L., and Halloran, G. M. 1988. Influence of gliadin composition and high molecular weight subunits of glutenin on dough properties in an F3 population of a bread wheat cross. J. Cereal Sci. 7:33–42.Google Scholar
  76. Larsson, K. 1983. Physical state of lipids and their technical effects in baking. In Lipids in Cereal Technology, ed. P. J. Barnes, pp. 237–251. London: Academic Press.Google Scholar
  77. Lasztity, R. 1969. Rheological properties of gluten. II. Viscoelastic properties of chemically modified gluten. Acta Chim. Acad. Sci. Hung. 62:75–85.Google Scholar
  78. Lasztity, R. 1970. Zur Frage des Zusammenhangs zwishen chemischer Struktur und Theologischen Eigenschaften von Klebereiweissen 2. Mitt. Die Rolle der quantitativen Verhältnisse von Klebereiweissfraktionen in der Ausbildung der Theologischen Eigenschaften. Die Nahrung 14:569–577.Google Scholar
  79. Lasztity, R. 1971. Investigation of the rhelogical properties of gluten. III. Role of hydrophobic bonds in the rheological properties of gluten. Acta Chim. Acad. Sci. Hung. 68:411–419.Google Scholar
  80. Lasztity, R. 1980. Correlation between chemical structure and rheological properties of gluten. Ann. Technol. Agric. 29:339–361.Google Scholar
  81. Lerchenthal, Ch. H., and Funt, C. B. 1970. Yield function in an unstable viscoelastic material (gluten gel). Isr. J. Technol. 8:317–323.Google Scholar
  82. Lindahl, L., and Eliasson, A. C. 1986. Effects of wheat proteins on the viscoelastic properties of starch gels. J. Sci. Food Agric. 37:1125–1132.Google Scholar
  83. Lundh, G., Eliasson, A.-C. and Larsson, K. 1988. Cross-linking of wheat storage protein monolayers by compression/expansion cycles at the air/water interface. J. Cereal Sci. 7:1–9.Google Scholar
  84. MacRitchie, F. 1975. Mechanical degradation of gluten proteins during high-speed mixing of doughs. J. Polym. Sci. Polym. Symp. 49:85–90.Google Scholar
  85. MacRitchie, F. 1985. Studies of the methodology for fractionation and reconstitution of wheat flours. J. Cereal Sci. 3:221–230.Google Scholar
  86. Marion, D., LeRoux, C., Akoka, S., Tellier, C., and Gallant, D. 1987. Lipid-protein interactions in wheat gluten: a phosphorus nuclear magnetic resonance spectroscopy and freeze-fracture electron microscopy study. J. Cereal Sci. 5:101–115.Google Scholar
  87. Matsumoto, S. 1979. Rheological properties of synthetic flour doughs. In Food Texture andRheology, ed. P. Sherman, pp. 291–301. New York: Academic Press.Google Scholar
  88. Matsuo, R. R. 1978. Note on a method for testing gluten strength. Cereal Chem. 55:259–262.Google Scholar
  89. Menjivar, J. A., and Rha, C. K. 1980. Viscoelastic effects in concentrated protein dispersions. Rheol. Acta 19:212–219.Google Scholar
  90. Menjivar, J. A., and Rha, C. K. 1981. Extrudate expansion of concentrated protein solutions. J. Rheol. 25:237–249.Google Scholar
  91. Menkovska, M., Lookhart, G. L., and Pomeranz, Y. 1987. Changes in the gliadin fraction(s) during breadmaking: isolation and characterization by high-performance liquid chromatography and Polyacrylamide gel electrophoresis. Cereal Chem. 64:311–314.Google Scholar
  92. Meredith, O. B., and Wren, J. J. 1969. Stability of the molecular weight distribution in wheat flour proteins during dough making. J. Sci. Food Agric. 20:235–237.Google Scholar
  93. Mita, T., and Bohlin, L. 1983. Shear stress relaxation of chemically modified gluten. Cereal Chem. 60:93–97.Google Scholar
  94. Mita, T., and Matsumoto, H. 1981. Flow properties of aqueous gluten and gluten methyl ester dispersions. Cereal Chem. 58: 57–61.Google Scholar
  95. Mita, T., and Matsumoto, H. 1984. Dynamic viscoelastic properties of concentrated dispersions of gluten and gluten methyl ester: contributions of glutamine side chain. Cereal Chem. 61:169–173.Google Scholar
  96. Mita, T., Nikai, K., Hiraoka, T., Matsuo, S., and Matsumoto, H. 1977. Physicochemical studies on wheat protein foams. J. Colloid Interface Sci. 59:172–178.Google Scholar
  97. Muller, H. G. 1969. Application of the statistical theory of rubber elasticity to gluten and dough. Cereal Chem. 46:443–446.Google Scholar
  98. Navickis, L. L., Anderson, R. A., Bagley, E. G., and Jasberg, B. K. 1982. Viscoelastic properties of wheat flours dough: variation of dynamic moduli with water and protein content. J. Text. Stud. 13:249–264.Google Scholar
  99. Nielsen, H. C., Babcock, G. E., and Senti, F. R. 1962. Molecular weight studies on glutenin before and after disulfide-bond splitting. Arch. Biochem. Biophys. 96:252–258.Google Scholar
  100. Orth, R. A., Dronzek, B. L., and Bushuk, W. 1973. Studies of glutenin. IV Microscopic structure and its relations to breadmaking quality. Cereal Chem. 50:688–696.Google Scholar
  101. Payne, P. I., Holt, L. M., Harinder, K., McCartney, D. P., and Lawrence, G. J. 1987. The use of near-isogenic lines with different HMW glutenin subunits in studying breadmaking quality and glutenin structure. In Proceedings of the 3rd International Workshop on Gluten Proteins, ed. R. Lasztity and F. Békés, pp. 216–226. Singapore: World Scientific.Google Scholar
  102. Payne, P. I., Law, C. N., and Mudd, E. E. 1980. Control by homologous group 1 chromosomes of the high-molecular-weight subunits of glutenin, a major protein of wheat endosperm. Theor. Appl. Genet. 58:113–120.Google Scholar
  103. Pena, R. J., and Ballance, G. M. 1987. Comparison of gluten quality in triticale: a fractionation-reconstitution study. Cereal Chem. 64:128–132.Google Scholar
  104. Pomeranz, Y., Finney, K. F., and Hoseney, R. C. 1970. Molecular approach to breadmaking. Bakers’ Dig. 44(3):22–28, 62.Google Scholar
  105. Prasada, Rao, U. J. S., and Nigam, S. N. 1987. Gel filtration chromatography of glutenin in dissociating solvents: effects of removing noncovalently bonded protein components on the viscoelastic character of glutenin. Cereal Chem. 64:168–172.Google Scholar
  106. Prugar, J. 1969. Ermittlung der Backfähigkeit von Weizen und Weizenmehl mit dem Penetrometer. Die Nahrung 13:687–696.Google Scholar
  107. Purcell, J. M., Kasarda, D. D., and Wu, C.-S. C. 1988. Secondary structures of wheat α- and ω-gliadin proteins: Fourier transform infrared spectroscopy. J. Cereal Sci. 7:21–32.Google Scholar
  108. Pyler, E. J. 1983. Flour proteins role in baking performance. Bakers’ Dig. 57(3)24–25, 27–28, 33.Google Scholar
  109. Ram, B. P., and Nigam, S. N. 1981. Stretchability of wheat gluten in relation to gluten composition and varietal differences. Can. Inst. Food Sci. Technol. J. 14:326–328.Google Scholar
  110. Ram, B. P., and Nigam, S. N. 1983. Texturometer as a tool for studying varietal differences in wheat flour doughs and gluten proteins. J. Text. Stud. 14:245–249.Google Scholar
  111. Redman, D. G. 1971. Wheat proteins. Chem. Ind. 38:1061–1068.Google Scholar
  112. Rinde, J. A., Tschoegl, N. W., and Smith, T. L. 1970. Large-deformation and rupture properties of wheat flour gluten. Cereal Chem. 47:225–235.Google Scholar
  113. Schofield, J. D., Bottomley, R. C., Timms, M. F., and Booth, M. R. 1983. The effect of heat on wheat gluten and the involvement of sulphydryl-disulphide interchange reactions. J. Cereal Sci. 1:241–253.Google Scholar
  114. Seilmeier, W., Wieser, H., and Belitz, H. D. 1987. High-performance liquid chromatography of reduced glutenin: amino acid composition of fractions and components. Z. Lebensm. Unters. Forsch. 185:487–489.Google Scholar
  115. Shewry, P. R., and Miflin, B. J. 1984. Seed storage proteins of economically important cereals. In Advances in Cereal Science and Technology, Vol. 7, ed. Y. Pomeranz, pp. 1–83. St. Paul, MN: American Association of Cereal Chemists.Google Scholar
  116. Shewry, P. R., Tatham, A. S., Forde, J., Kreis, M., and Miflin, B. J. 1986. The classification and nomenclature of wheat gluten proteins: a reassessment. J. Cereal Sci. 4:97–106.Google Scholar
  117. Smith, J. R., Smith, T. L., and Tschoegl, N. W. 1970. Rheological properties of wheat flour doughs. III. Dynamic shear modulus and its dependence on amplitude, frequency and dough composition. Rheol. Acta 9:239–252.Google Scholar
  118. Szczesniak, A. S., Loh, J., and Mannell, W. R. 1983. Effect of moisture transfer on dynamic viscoelastic parameters of wheat flour/water systems. J. Rheol. 27:537–556.Google Scholar
  119. Tanaka, K., and Bushuk, W., 1973. Changes in flour proteins during dough-mixing. II. Gel filtration and electrophoresis results. Cereal Chem. 50:597–605.Google Scholar
  120. Tatham, A. S., Field, J. M., Smith, S. J., and Shewry, P. R. 1987. The conformations of wheat gluten proteins. II. Aggregated gliadins and low molecular weight subunits of glutenin. J. Cereal Sci. 5:203–214.Google Scholar
  121. Tatham, A. S., Miflin, B. J., and Shewry, P. R. 1985. The beta-turn conformation in wheat gluten proteins: relationship to gluten elasticity. Cereal Chem. 62:405–412.Google Scholar
  122. Tatham, A. S., and Shewry, P. R. 1985. The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of,α- β-, γ- and ω-gliadins. J. Cereal Sci. 3:103–113.Google Scholar
  123. Taylor, N. W., and Cluskey, J. E. 1962. Wheat gluten and its glutenin component: viscosity, diffusion and sedimentation studies. Arch. Biochem. Biophys. 97:399–405.Google Scholar
  124. Telegdy-Kovats, L., and Lasztity, R. 1970. Chemical structure of gluten proteins. Jena Rev. 15:116–120.Google Scholar
  125. Tschoegl, N. W., and Alexander, A. E. 1960a. The surface chemistry of wheat gluten. I. Surface pressure measurements. J. Colloid Sci. 15:155–167.Google Scholar
  126. Tschoegl, N. W., and Alexander, A. E. 1960b. The surface chemistry of wheat gluten. II. Measurements of surface viscoelasticity. J. Colloid Sci. 15:168–182.Google Scholar
  127. Udy, D. C. 1953. Effect of bisulfite and thioglycolic acid on the viscosity of wheat gluten dispersions. Cereal Chem. 30:288–301.Google Scholar
  128. Wall, J. S., and Beckwith, A. C. 1969. Relationship between structure and rheological properties of gluten proteins. Cereal Sci. Today 14:16–18, 20–21.Google Scholar
  129. Wasik, R. J., Daoust, H., and Martin, C. 1979. Studies of glutenin solubilized in high concentrations of sodium stearate. Cereal Chem. 56:90–94.Google Scholar
  130. Wieser, H., Seilmeier, W., and Beitz, H.-D. 1980. Vergleichende Untersuchungen über partielle Aminosäuresequenzen von Prolaminen und Glutelinen verschiedener Getreidearten. I. Proteinfraktionierung nach Osborne. Z. Lebensm. Unters. Forsch. 170:17–26.Google Scholar
  131. Wieser, H., Seilmeier, W., and Belitz, H. D. 1987. Vergleichende Untersuchungen über partielle Aminosäuresequenzen von Prolaminen und Glutelinen versheidener Getreidearten. VII. Aminosäuresequenzen von Prolaminpeptiden. Z. Lebensm. Unters. Forsch. 184:366–373.Google Scholar
  132. Wu, Y. V., Cluskey, J. E., and Sexson, K. R. 1967. Effect of ionic strength on the molecular weight and conformation of wheat gluten proteins in 3 M urea solutions. Biochem. Biophys. Acta 133:83–90.Google Scholar
  133. Wu, Y. V., and Dimler, R. J. 1963. Hydrogen ion equilibria of wheat glutenin and gliadin. Arch. Biochem. Biophys. 103:310–318.Google Scholar
  134. Wu, Y. V., and Dimler, R. J. 1964. Conformational studies of wheat gluten, glutenin, and gliadin in urea solutions at various pH’s. Arch. Biochem. Biophys. 107:435–440.Google Scholar
  135. Zentner, H. 1968. Effect of ascorbic acid on wheat gluten. J. Sci. Food Agric. 19:464–467.Google Scholar

Copyright information

© Van Nostrand Reinhold 1990

Authors and Affiliations

  • Ann-Charlotte Eliasson

There are no affiliations available

Personalised recommendations