Bistability and Chaos in Counterpropagating Laser Beams

  • Daniel J. Gauthier
  • Michelle S. Malcuit
  • Robert W. Boyd
Conference paper


In this paper we describe experimental observations which demonstrate that multi-stability and chaotic instabilities can occur in cavity-less nonlinear optical systems. In particular, we have experimentally investigated the stability characteristics of near-resonant laser beams counterpropagating through sodium vapor. We observe multistability in the states of polarization of the transmitted laser beams for the case of moderately strong nonlinear coupling and observe chaotic fluctuations in the polarizations for the case of larger nonlinear coupling (i.e. for larger atomic number densities or for larger laser intensities). These obser­vations confirm the predictions that chaotic fluctuations1 and bistability2,3 can occur in the absence of external feedback, solely through the interaction of two beams of light.


Nonlinear Coupling Probe Wave Forward Wave Kerr Medium Transmitted Laser Beam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Silberberg and I. Bar-Joseph, J. Opt. Soc. B,1, 662 (1984).CrossRefGoogle Scholar
  2. 2.
    H.G. Winful and J.H. Marburger, Appl. Phys. Lett,36, 613 (1980).CrossRefGoogle Scholar
  3. 3.
    R. Lytel, J. Opt. Soc. Am. B,1, 91 (1984);CrossRefGoogle Scholar
  4. A.E. Kaplan and C.T. Law, IEEE J. Quantum Electron.,QE-21, 1529 (1985);CrossRefGoogle Scholar
  5. M.I. Dykman, Sov. Phys. JETP,64, 927 (1986).Google Scholar
  6. 4.
    A. Yariv and D.M. Pepper, Opt. Lett.,1, 16 (1977).CrossRefGoogle Scholar
  7. 5.
    G.C. Valley and G.J. Dunning, Opt. Lett.,9, 513 (1984);CrossRefGoogle Scholar
  8. CJ. Gaeta, J.F. Lam, and R.C. Lind, Opt. Lett.,14, 247 (1989).CrossRefGoogle Scholar
  9. 6.
    I. Bar-Joseph and Y. Silberberg, Phys. Rev. A,36, 1731 (1987);CrossRefGoogle Scholar
  10. P. Narum, A.L. Gaeta, M.D. Skeldon and R.W. Boyd, J. Opt. Soc. B,5, 623 (1988).CrossRefGoogle Scholar
  11. 7.
    Y. Silberberg and I. Bar-Joseph, Phys. Rev. Lett.,48, 1541 (1982).CrossRefGoogle Scholar
  12. 8.
    A.L. Gaeta, R.W. Boyd, J.R. Ackerhalt and P.W. Milonni, Phys. Rev. Lett.,58, 2432 (1987);CrossRefGoogle Scholar
  13. A.L. Gaeta, R.W. Boyd, P.W. Milonni and J.R. Ackerhalt, inOptical Bistabilitv III. H.M. Gibbs, P. Mandel, N. Peyghambariam and S.D. Smith, eds., Springer-Verlag, New York (1986), p. 302.Google Scholar
  14. 9.
    G. Grynberg, Opt. Commun.,66, 321 (1988);CrossRefGoogle Scholar
  15. W.J. Firth and C. Paré, Opt. Lett.,13, 1096 (1988);CrossRefGoogle Scholar
  16. G. Grynberg and J. Paye, Europhys. Lett.,8, 29 (1989);CrossRefGoogle Scholar
  17. J. Pender and L. Hesselink, IEEE J. Quantum Electron.,QE-25, 395 (1989).CrossRefGoogle Scholar
  18. 10.
    D.J. Gauthier, M.S. Malcuit and R.W. Boyd, Phys. Rev. Lett.,61, 1827 (1988).CrossRefGoogle Scholar
  19. 11.
    S. Saikan, J. Opt. Soc. Am.,68,1185 (1978);CrossRefGoogle Scholar
  20. S. Saikan, J. Opt. Soc. Am.,72, 515 (1982).CrossRefGoogle Scholar
  21. 12.
    P. Kumar and J.H. Shapiro, Opt. Lett.,10, 226 (1985).CrossRefGoogle Scholar
  22. 13.
    P. Grassberger and I. Procaccia, Phys. Rev. Lett.,50, 346 (1983)MathSciNetCrossRefGoogle Scholar
  23. P. Grassberger and I. Procaccia, Phys. Rev. A,28, 2591 (1983);CrossRefGoogle Scholar
  24. R. Badii and A. Politi, Phys. Rev. Lett.,52, 1661 (1984).MathSciNetCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Daniel J. Gauthier
    • 1
  • Michelle S. Malcuit
    • 1
  • Robert W. Boyd
    • 1
  1. 1.The Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations