Advertisement

Quantum Statistical Properties of Optical Phase Conjugation

  • Alexander L. Gaeta
  • Robert W. Boyd
Conference paper

Abstract

Optical phase conjugation is nonlinear optical process that can remove aberrations from an optical wavefront.1 Most previous treatments of phase conjugation have treated all of the fields classically. In this paper, we treat the signal and conjugate fields quantum mechanically in order to investigate the ability of a phase conjugate mirror (PCM) to conjugate a weak signal field or a field which is in a pure quantum state (e.g., quadrature or amplitude squeezed). We use these results to investigate the quantum noise properties of a phase conjugate resonator (PCR) and to understand how the spontaneous emission of a two-level atom is modified by the presence of a PCM.

Keywords

Pump Wave Incident Field Phase Conjugation Noise Photon Dipole Moment Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Optical Phase Conjugation, edited by RA. Fisher (Academic, New York, 1983); Principles of Optical Phase Conjugation(Springer-Verlag, Berlin, 1985).Google Scholar
  2. Optical Phase Conjugation, edited by RA. Fisher (Academic, New York, 1983); Principles of Optical Phase Conjugation(Springer-Verlag, Berlin, 1985).Google Scholar
  3. 2.
    C. M. Caves, Phys. Rev. D26, 1817 (1982); Y. Yamamoto and H. A. Haus, Rev. Mod. Phys.58,1001 (1986).Google Scholar
  4. Y. Yamamoto and HA. Haus, Rev. Mod. Phys.58,1001 (1986).Google Scholar
  5. 3.
    A. L. Gaeta and RW. Boyd, Phys. Rev. Lett.60, 2618 (1988).CrossRefGoogle Scholar
  6. 4.
    H. P. Yuen and JH. Shapiro, Opt. Lett.4, 334 (1979); R. S. Bondurant, P. Kumar, J. H. Shapiro, and M. Maeda, Phys. Rev. A30, 343 (1984); G. S. Agarwal, J. Opt. Soc. Am. B4, 1806 (1987).CrossRefGoogle Scholar
  7. RS. Bondurant, P. Kumar, JH. Shapiro, and M. Maeda, Phys. Rev. A30, 343 (1984)Google Scholar
  8. G. S. Agarwal, J. Opt. Soc. Am. B4, 1806 (1987).Google Scholar
  9. 5.
    Z. Y. Ou, S. Bali, and L. Mandel, Phys. Rev. A39, 2509 (1989).CrossRefGoogle Scholar
  10. 6.
    N. F. Andreev, VI. Bespalov, MA. Dvotetsky, and GA. Pasmanik, IEEE J. Quantum Electron.OE-25. 346 (1989).CrossRefGoogle Scholar
  11. 7.
    L. Mandel, Opt. Lett.4, 205 (1979).CrossRefGoogle Scholar
  12. 8.
    C. K. Hong, S. Friberg, and L. Mandel, J. Opt. Soc. Am. B2, 494 (1985).CrossRefGoogle Scholar
  13. 9.
    A. T. Friberg, M. Kauranen, and R. Salomaa, J. Opt. Soc. Am. B3, 1656 (1986)CrossRefGoogle Scholar
  14. A. T. Friberg, M. Kauranen, K. Nyholm, and R. Salomaa, Opt. Lett.12, 193 (1987).CrossRefGoogle Scholar
  15. 10.
    S. Prasad, MO. Scully, and W. Matienssen, Opt. Commun.62, 139 (1987)CrossRefGoogle Scholar
  16. Z. Y. Ou, CK. Hong, and L. Mandel, Opt. Commun.63, 118 (1987).CrossRefGoogle Scholar
  17. 11.
    See for example KH. Drexhage,Progress in Optics. Vol. 12, ed. by E. Wolf (North-Holland, Amsterdam, 1974), pp. 163–232.Google Scholar
  18. 12.
    G. S. Agarwal, Opt. Commun.42, 205 (1982)CrossRefGoogle Scholar
  19. J. T. Lin, X. Huang, and TF. George, J. Opt. Soc. Am. B4,219 (1987)CrossRefGoogle Scholar
  20. E. J. Bochove, Phys. Rev. Lett.59, 2547 (1987).CrossRefGoogle Scholar
  21. 13.
    P. W. Milonni, Phys. Rep.25, 1 (1976).CrossRefGoogle Scholar
  22. 14.
    P. W. Milonni, E. J. Bochove, and R. J. Cook, submitted to J. Opt. Soc. Am. B (1989).Google Scholar
  23. 15.
    See for example,The Quantum Theory of Light. R. Loudon (Oxford University, New York, 1983).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Alexander L. Gaeta
    • 1
  • Robert W. Boyd
    • 1
  1. 1.The Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations