Skip to main content

Optical Manifestations of Berry’s Topological Phase: Classical and Quantum Aspects

  • Conference paper
Coherence and Quantum Optics VI
  • 23 Accesses

Abstract

Berry’s discovery of a topological phase in quantum mechanics has led to a unified view of many seemingly disconnected topological phenomena in physics, both at the quantum and classical levels.1 Here we review some recent optical manifestations of this Aharonov-Bohm-like phase. There are now four distinct manifestations of topological phases in optics. All these phases can be thought of as anholonomies. An anholonomy can arise whenever a system is processed through a sequence of changes such that it is returned to its original state; most of the variables characterizing the system obviously return to their original values, but surprisingly certain ones may not. An example is the phase anholonomy which an electron exhibits when it returns to its original state after encircling a solenoid in the Aharonov-Bohm effect. Another example is the age anholonomy which a travelling twin experiences relative to the nontravelling twin when he returns to the Earth after a rocket trip in the twin paradox. When light is cycled through a sequence of states such that it returns to its original state, it can also acquire anholonomies at both the classical and quantum levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. V. Berry, Proc. Roy. Soc. (London) A392, 45 (1984);

    Google Scholar 

  2. J. H. Hannay, J. Phys. A18, 221 (1985);

    MathSciNet  Google Scholar 

  3. Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).

    Article  MathSciNet  Google Scholar 

  4. R. Y. Chiao and Y. S. Wu, Phys. Rev. Lett 57, 933 (1986);

    Article  Google Scholar 

  5. A. Tomita and R. Y. Chiao, Phys. Rev. Lett. 57, 937 (1986);

    Article  Google Scholar 

  6. R.Y. Chiao, Nucl. Phys. B (Proc. Suppl.) 6, 289 (1989).

    Google Scholar 

  7. J. N. Ross, Opt. Quantum Electron. 16, 445 (1984);

    Article  Google Scholar 

  8. F. D. M. Haldane, Opt. Lett. 11, 730 (1986).

    Article  Google Scholar 

  9. J. Anandan and L. Stodolsky, Phys. Rev. D35, 2597 (1987);

    MathSciNet  Google Scholar 

  10. T. F. Jordan, J. Math. Phys. 28, 1759 (1987);

    Article  MathSciNet  Google Scholar 

  11. T. F. Jordan, J. Math. Phys. 29, 2042 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Y. Chiao, A. Antaramian, K. M. Ganga, H. Jiao, S. R. Wilkinson, and H. Nathel, Phys. Rev. Lett. 60, 1214 (1988).

    Article  Google Scholar 

  13. S. Pancharatnam, Proc. Ind. Acad. Sci. A44, 247 (1956);

    MathSciNet  Google Scholar 

  14. R. Bhandari and J. Samuel, Phys. Rev. Lett. 60, 1210;

    Google Scholar 

  15. T. H. Chyba, L. J. Wang, L. Mandel, and R. Simon, Opt. Lett. 13, 562 (1988);

    Article  Google Scholar 

  16. R. D. Simon, H. J. Kimble, and E. C. G. Sudarshan, Phys. Rev. Lett. 61, 19 (1988);

    Article  Google Scholar 

  17. R. Bhandari, Phys. Lett. A133, 1 (1988).

    Google Scholar 

  18. H. Jiao, S. R. Wilkinson, R. Y. Chiao, and H. Nathel, Phys. Rev. A39, 3475 (1989).

    Google Scholar 

  19. W. R. Tompkin, M. S. Malcuit, R. W. Boyd, and R. Y. Chiao (submitted to Europhys. Lett.).

    Google Scholar 

  20. See the special issue on squeezed states in J. Opt. Soc. Am. B4, 1450 (1987).

    Google Scholar 

  21. R. Gilmore, “Lie Groups, Lie Algebras, and Some of their Applications”, John Wiley & Sons, New York, 1974.

    MATH  Google Scholar 

  22. R. Y. Chiao and T. F. Jordan, Phys. Lett. A132, 77 (1988);

    MathSciNet  Google Scholar 

  23. RY. Chiao, Nucl. Phys. B (Proc. Suppl.) 6, 327 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. K. Kitano and T. Yabuzaki (preprint).

    Google Scholar 

  25. D. Suter, K. T. Mueller, and A. Pines, Phys. Rev. Lett. 60, 1218 (1988); L. Dabrowski and H. Grosse (preprint).

    Google Scholar 

  26. J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988).

    Article  MathSciNet  Google Scholar 

  27. D. C. Burnham and D. L. Weinreb, Phys. Rev. Lett. 25, 84 (1970)

    Article  Google Scholar 

  28. R. Ghosh and L. Mandel, Phys. Rev. Lett. 59, 1903 (1987);

    Article  Google Scholar 

  29. C. K. Hong, Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987);

    Article  Google Scholar 

  30. Z. Y. Ou and L. Mandel; Phys. Rev. Lett. 61, 50 (1988);

    Article  MathSciNet  Google Scholar 

  31. Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 54 (1988);

    Article  MathSciNet  Google Scholar 

  32. P. Grangier, A. Aspect, and G. Roger, Europhys. Lett. 1, 173 (1986).

    Article  Google Scholar 

  33. D. C. Burnham and D. L. Weinreb, Phys. Rev. Lett. 25, 84 (1970);

    Article  Google Scholar 

  34. R. Ghosh and L. Mandel, Phys. Rev. Lett. 59, 1903 (1987);

    Article  Google Scholar 

  35. C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987);

    Article  Google Scholar 

  36. Z. Y. Ou and L. Mandel; Phys. Rev. Lett. 61, 50 (1988);

    Article  MathSciNet  Google Scholar 

  37. Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 54 (1988);

    Article  MathSciNet  Google Scholar 

  38. P. Grangier, A. Aspect, and G. Roger, Europhys. Lett. 1, 173 (1986).

    Article  Google Scholar 

  39. J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989);

    Article  Google Scholar 

  40. M. A. Horne, A. Shimony, and A. Zeilinger, Phys. Rev. Lett. 62, 2209 (1989).

    Article  Google Scholar 

  41. J. C. Garrison and R. Y. Chiao, Phys. Rev. Lett. 60, 165 (1988).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this paper

Cite this paper

Chiao, R.Y., Hong, C.K., Kwiat, P.G., Nathel, H., Vareka, W.A. (1990). Optical Manifestations of Berry’s Topological Phase: Classical and Quantum Aspects. In: Eberly, J.H., Mandel, L., Wolf, E. (eds) Coherence and Quantum Optics VI. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0847-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0847-8_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8112-2

  • Online ISBN: 978-1-4613-0847-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics