Polaritons and Retarded Interactions in Nonlinear Optical Susceptibilities

  • Shaul Mukamel
  • Jasper Knoester
  • Frank C. Spano
Conference paper


In this paper we discuss the calculation of nonlinear optical susceptibilities in infinite crystals and in small molecular aggregates. In both cases, a systematic method is developed for treating the intermolecular interactions and the matter — field coupling. For the infinite crystal it is common to define the susceptibilities as the expansion coefficients of the polarization field in terms of the internal (Maxwell) electric field. This requires an analysis in which both the radiation field and the material variables are treated as degrees of freedom, which naturally leads to the introduction of polaritons: coupled field — matter eigenmodes. For molecular aggregates, it is more useful to define susceptibilities with respect to the external field, so that the problem may be analyzed in terms of material modes, such as excitons and biexcitons.


Transition Dipole Moment Nonlinear Susceptibility Phase Conjugate Molecular Aggregate Nonlinear Optical Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    a) J. Knoester and S. Mukamel, Phvs. Rev. A 39, 1899 (1989);Google Scholar
  2. b) J. Knoester and S. Mukamel J. Opts. Soc. Am. B 6, 645 (1989);Google Scholar
  3. c) J. Knoester and S. Mukamel J. Chem. Phvs. 91, 959 (1989).CrossRefGoogle Scholar
  4. 2.
    D. Bedeaux and N. Bloembergan, Physica 69, 67 (1973).CrossRefGoogle Scholar
  5. 3.
    C. Flytzanis, in Quantum Electronics V.I., edited by H. Rabin and C. L. Tang, Academic, New York (1984).Google Scholar
  6. 4.
    (a) V.M. Agranovich, Sov. Phys. JETP 37, 307 (1960);Google Scholar
  7. (b) L.N. Ovander, Sov., Phys. Usp. 8, 337 (1965).Google Scholar
  8. 5.
    (a) E.A. Power and S. Zienau, Philos. Trans. R. Soc. London. Ser. A251, 427 (1959);Google Scholar
  9. (b) D.P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics. Academic Press, London (1984).Google Scholar
  10. 6.
    L. Mandel, Phys. Rev. A 20, 1590 (1979);CrossRefGoogle Scholar
  11. S.M. Golshan and D.H. Kobe, Phys. Rev. A 34. 4449 (1986).CrossRefGoogle Scholar
  12. 7.
    S.H. Stevenson, M.A. Connolly, and G.J. Small, Chem. Phys. 128, 157 (1988).CrossRefGoogle Scholar
  13. 8.
    T.S. Rose, R. Righini, and M.D. Fayer, Chem. Phys. Lett. 106, 13 (1984);CrossRefGoogle Scholar
  14. T.S. Rose, V.J. Newell, J.S. Meth, and M.D. Fayer, Chem. Phys. Lett. 145, 475 (1988).CrossRefGoogle Scholar
  15. 9.
    V.M. Agranovich, A.M. Ratner, and M. Salieva, Solid State Commun. 63, 329 (1987);CrossRefGoogle Scholar
  16. V.M. Agranovich, A.M. Ratner, and M. Salieva,Chem. Phys. 128, 23 (1988).CrossRefGoogle Scholar
  17. 10.
    M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982).CrossRefGoogle Scholar
  18. 11.
    F.C. Spano and S. Mukamel, J. Chem. Phvs. 91, 683 (1989);CrossRefGoogle Scholar
  19. J. Grad, G. Hernandez and S. Mukamel. Phys. Rev. A 37. 3835 (1988).CrossRefGoogle Scholar
  20. 12.
    E. Hanamura, Phys. Rev. B 37, 1273 (1988).CrossRefGoogle Scholar
  21. 13.
    F.C. Spano and S. Mukamel, (submitted to Phys. Rev. A).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Shaul Mukamel
    • 1
  • Jasper Knoester
    • 1
  • Frank C. Spano
    • 1
  1. 1.Department of ChemistryUniversity of RochesterRochesterUSA

Personalised recommendations