Photochemical Hole Burning of Quinizarin and Tetraphenylporphin in Main-Chain Aromatic Polymers

  • Kazuyuki Horie
  • Kazuo Kuroki
  • Itaru Mita
  • Akira Furusawa


The efficiency of hole formation and the temperature stability of holes burnt at 4.2 K by using argon-ion laser, helium-neon laser, or ring dye laser are studied for quinizarin (Q) and tetraphenylporphin (TPP) in various main-chain aromatic polymer matrices. The efficiency of hole formation for TPP in phenoxy resin (PhR) is higher than those in poly(ethylene terephthalate) (PET), polyimide (PI), poly(methyl methacrylate) (PMMA), and liquid crystalline polymer (LCP). The temperature stability of the holes was evaluated by cycle annealing experiments. In the case of TPP in phenoxy resin (PhR), the hole burnt at 4.2 K could be detected even at liquid nitrogen temperature (80 K) after 30 min annealing at the temperature. The hole burnt at 4.2 K partially recovers when cooled again to and measured at 4.2 K after cycle annealing up to 110 K for TPP in PMMA, 120 K for TPP in PhR, and 130 K for TPP in PI. The first experiment of photochemical hole burning (PHB) without using liquid helium as a refrigerant was carried out for TPP in PhR system, where we could burn and observe clear holes even at 80 and 100 K.


Ethylene Terephthalate Hole Formation Hole Depth Aromatic Polyimide Hole Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Friedrich and D. Haarer, Angew. Chem. Int. Ed. Eng., 23, 113 (1984).CrossRefGoogle Scholar
  2. 2.
    R.M. Macfarlane and R.M. Shelby, J. Luminescence, 36, 179 (1987).CrossRefGoogle Scholar
  3. 3.
    W.E. Moerner ed., “Persistent Spectral Hole-Burning; Science and Applications”,Springer, Berlin, (1988) Google Scholar
  4. 4.
    A.R. Gutierrz, J. Friedrich, D. Haarer and H. Wolfrum, IBM J. Res. Develop., 26, 198 (1982).CrossRefGoogle Scholar
  5. 5.
    W.E. Moerner, J. Mol. Electronics, 1, 55 (1985).Google Scholar
  6. 6.
    K. Horie and I. Mita, Adv. Polym. Sci., 88, 77 (1989).CrossRefGoogle Scholar
  7. 7.
    T. Tani, H. Namikawa, K. Arai and A. Makishima, J. Appl. Phys., 58 3559 (1985).CrossRefGoogle Scholar
  8. 8.
    K. Horie, K. Hirao, K. Kuroki, T. Naito and I. Mita, J. Fac. Eng. Univ. Tokyo, 39, 51 (1987).Google Scholar
  9. 9.
    K. Horie, T. Mori, T. Naito and I. Mita, Appl. Phys. Lett., 55, 935 (1988).CrossRefGoogle Scholar
  10. 10.
    K. Horie, A. Furusawa, K. Kuroki, I. Mita, S. Kubota, T. Koyama, K. Hanabusa and H. Shirai, unpublished results, (1988).Google Scholar
  11. 11.
    K. Horie, K. Kuroki, I. Mita, H. Ono and S. Okumura, unpublished results, (1988)Google Scholar
  12. 12.
    F. Graf, H.K. Hong, A. Nazzal and D. Haarer, Chem. Phys. Lett., 59, 217 (1987).CrossRefGoogle Scholar
  13. 13.
    S. Volker and R.M. Macfarlane, IBM J. Res. Develop., 23, 547 (1979)CrossRefGoogle Scholar
  14. 14.
    K. Horie, K. Kuroki, T. Naito, I. Mita and K. Hirao, Polymer Preprints Jpn., 36, 3510 (1987).Google Scholar
  15. 15.
    S. Volker and R.M. Macfarlane, J. Chem. Phys., 73, 4476 (1980).CrossRefGoogle Scholar
  16. 16.
    A. Furusawa, K. Horie, K. Kuroki and I. Mita, Preprints Jap. Soc. Appl. Phys., 881117–01, p. 175 (1988).Google Scholar
  17. 17.
    K. Sakoda, K.Kominami and M.Iwamoto, Jap. J. Appl. Phys., 27, Ll304 (1988)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Kazuyuki Horie
    • 1
  • Kazuo Kuroki
    • 1
  • Itaru Mita
    • 1
  • Akira Furusawa
    • 2
  1. 1.Research Center for Advanced Science and TechnologyUniversity of TokyoTokyoJapan
  2. 2.Research LaboratoryNikon Corp.TokyoJapan

Personalised recommendations