Adsorption Behaviour Of Surface Active Agents And Electrokinetic Phenomena

  • H. J. Jacobasch


Electrokinetic phenomena in solid-liquid systems are strongly influenced by the adsorption of surfactant ions in the Stern layer. The adsorbability of surfactant ions depends on their chemical structure and concentration in the liquid as well as on the surface structure of the solid. Therefore, zeta potential measurements can be used to determine ionic surfactants qualitatively and quantitatively. Furthermore, the interaction between solids and surfactants in regard to adsorption and diffusion processes can be investigated. The theoretical background of the relationship between surfactant adsorption and zeta potential is reviewed, and an automatically working electrokinetic meter which allows the investigation of surfactant solutions is described. Finally, conclusions are drawn concerning the optimization of technological processes by zeta potential measurements.


Zeta Potential Electrical Double Layer Zeta Potential Measurement Cetyl Pyridinium Chloride Stern Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Schurz, Ch. Jorde, V. Ribitsch, H.-J. Jacobasch, H. Körber, and R. Hanke, GIT Fachz. Lab. 30, 98–101 (1986).Google Scholar
  2. 2.
    R.J. Hunter, “Zeta Potential in Colloid Science”, Academic Press London-New York, 1981.Google Scholar
  3. 3.
    M.v. Stackelberg, W. Kling, W. Benzel, and F. Wilke, Kolloid-Z. 133, 67–80 (1954).Google Scholar
  4. 4.
    T. Suzawa, and M. Yuzawa, Yugakaku (J. Japan Oil Chemist’s Soc.) 15, 20–26 (1966).Google Scholar
  5. 5.
    T. Suzawa, Kogyo Kagaku Zasshi (J. Chem. Soc. Japan, Ind. Chem. Sect.) 66, 1002–1007 (1963).Google Scholar
  6. 6.
    T. Suzawa, Senshoku Kogyo (Dyeing Ind.) 18, 534–539 (1970).Google Scholar
  7. 7.
    H.-J. Jacobasch, Das Papier 31, 436–441 H977).Google Scholar
  8. 8.
    H.-J. Jacobasch, “Oberflächenchemie faserbildender Polymere” Akademie-Verlag, Berlin, 1984.Google Scholar
  9. 9.
    M. Börner and H.-J. Jacobasch, in “Proc. of the Symposium on Electro-kinetic Phenomena ‘85”, M. Rätzsch, Editor, pp. 227–251, Institute of Polymer Technology, Dresden, 1985.Google Scholar
  10. 10.
    H. Schubert, Archiwum Gornictwa 16, 157–172 (1971).Google Scholar
  11. 11.
    H. Kaden and J. Beger, Acta Polymerica 34, 302–303 (1983).CrossRefGoogle Scholar
  12. 12.
    H.-J. Jacobasch, in “Physicochemical Aspects of Polymer Surfaces”. K.L. Mittal, Editor, Vol. 2, pp. 637–651, Plenum Press, New York, 1983.Google Scholar
  13. 13.
    M. Ratzsch, H.-J. Jacobasch and K.-H. Freitag, in “Polymer Composites”. B. Sedlacek, Editor, pp. 413–429, Walter de Gruyter, Berlin, 1985.Google Scholar
  14. 14.
    H.P. Schreiber, C. Richard and M.R. Wertheimer, in “Physicochemical Aspects of Polymer Surfaces”. K.L. Mittal, Editor, Vol. 2, pp. 739–748, Plenum Press, New York, 1983.Google Scholar
  15. 15.
    unpublished results, 1986.Google Scholar
  16. 16.
    S. Sack, Institute of Polymer Technology, Dresden, private communication, 1986.Google Scholar
  17. 17.
    A.R.C. Westwood, J.S. Ahearn and J.J. Mills, Colloids Surfaces 2, 1–35 (1981).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York 1990

Authors and Affiliations

  • H. J. Jacobasch
    • 1
  1. 1.Institute of Polymer Technology of the Academy of Sciences of the German Democratic RepublicDresdenGermany

Personalised recommendations