Genetics and Molecular Biology of Higher Plant Nitrate Reductases

  • Andris Kleinhofs
  • Robert L. Warner
  • James M. Melzer
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 23)

Abstract

Nitrate assimilation is the primary pathway through which most reduced nitrogen is accumulated in plants. The pathway consists of two well characterized enzymes, nitrate and nitrite reductases. Poorly characterized nitrate uptake and transport mechanisms are also involved. Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite which is then reduced to ammonium ion by nitrite reductase. Incorporation of ammonium ion into amino acids is carried out by the glutamine synthetaseglutamate synthase pathway. The first step in the nitrate assimilation pathway, nitrate reductase, is highly regulated and is believed to be rate limiting. There has been a great deal of research concerning the biochemistry, genetics and physiology of NR which has recently been reviewed.1–3 Also a recent comprehensive conference was held on the topic of nitrate assimilation, and the proceedings will be published.4 Readers are referred to these works and the references therein for a detailed review. Here we will concentrate on NR, especially the recent accomplishments.

Keywords

Nicotin Cysteine Nitrite Assimilation Glutamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    KLEINHOFS, A., R.L. WARNER, K.R. NARAYANAN. 1985. Current progress towards an understanding of the genetics and molecular biology of nitrate reductase in higher plants. In Oxford Surveys of Plant Molecular and Cell Biology. (B.J. Miflin, ed.), Oxford University Press, Oxford, Vol. 2, pp. 91–121.Google Scholar
  2. 2.
    WRAY, J.L. 1986. The molecular genetics of higher plant nitrate assimilation. In A Genetic Approach to Plant Biochemistry. (A. Blomstein, P. King, eds.), Springer-Verlag, Vienna, pp. 101–157.CrossRefGoogle Scholar
  3. 3.
    CAMPBELL, W.H., J. SMARRELLI. 1985. Nitrate reductase: Biochemistry and regulation. In Biochemical Basis of Plant Breeding. (C. Neyra, ed.), CRC Press, Boca Raton, Vol. II, pp. 1–39.Google Scholar
  4. 4.
    WRAY, J.L., J.R. KINGHORN, eds. 1988. Molecular and genetic aspects of nitrate assimilation. Oxford University Press, Oxford (in press).Google Scholar
  5. 5.
    EVANS, H.J., A. NASON. 1953. Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol. 28: 233–254.CrossRefGoogle Scholar
  6. 6.
    SOLOMONSON, L.P. 1975. Purification of NADH-nitrate reductase by affinity chromatography. Plant Physiol. 56: 853–855.CrossRefGoogle Scholar
  7. 7.
    CAMPBELL, W.H. 1976. Separation of soybean leaf nitrate reductases by affinity chromatography. Plant Sci. Lett. 7: 239–247.ADSCrossRefGoogle Scholar
  8. 8.
    SHEN, T.-C., E.A. FUNKHOUSER, M.G. GUERRERO. 1976. NADH- and NAD(P)H-nitrate reductases in rice seedlings. Plant Physiol. 58: 292–294.CrossRefGoogle Scholar
  9. 9.
    CAMPBELL, W.H., J. SMARRELLI, JR. 1978. Purification and kinetics of higher plant NADH:nitrate reductase. Plant Physiol. 61: 611–616.CrossRefGoogle Scholar
  10. 10.
    SHERRARD, J.H., M.J. DALLING. 1979. In vitro stability of nitrate reductase from wheat leaves. I. Stability of highly purified enzyme and its component activities. Plant Physiol. 63: 346–353.CrossRefGoogle Scholar
  11. 11.
    KUO, T.M., A. KLEINHOFS, R.L. WARNER. 1980. Purification and partial characterization of nitrate reductase from barley leaves. Plant Sci. Lett. 17: 371–381.CrossRefGoogle Scholar
  12. 12.
    KUO, T.M., D.A. SOMERS, A. KLEINHOFS, R.L. WARNER. 1982. NADH-nitrate reductase in barley leaves. Identification and amino acid composition of subunit protein. Biochim. Biophys. Acta 708: 75–81.CrossRefGoogle Scholar
  13. 13.
    SMALL, I.S., J.L. WRAY. 1980. NADH nitrate reductase and related NADH cytochrome c reductase species in barley. Phytochemistry 19: 387–394.CrossRefGoogle Scholar
  14. 14.
    CAMPBELL, J.M., J.L. WRAY. 1983. Purification of barley nitrate reductase and demonstration of nicked subunits. Phytochemistry 22: 2375–2382.CrossRefGoogle Scholar
  15. 15.
    REDINBAUGH, M.G., W.H. CAMPBELL. 1985. Quaternary structure and composition of squash NADH-nitrate reductase. J. Biol. Chem. 260: 3380–3385.Google Scholar
  16. 16.
    KUO, T.M., R.L. WARNER, A. KLEINHOFS. 1982. In vitro stability of nitrate reductase from barley leaves. Phytochemistry 21: 531–533.CrossRefGoogle Scholar
  17. 17.
    REDINBAUGH, M.G., W.H. CAMPBELL. 1983. Purification of squash NADH:nitrate reductase by zinc chelate affinity chromatography. Plant Physiol. 71: 205–207.CrossRefGoogle Scholar
  18. 18.
    FIDO, R.J., B.A. NOTTON. 1984. Spinach nitrate reductase: further purification and removal of nicked sub-units by affinity chromatography. Plant Sci. Lett. 37: 87–91.CrossRefGoogle Scholar
  19. 19.
    NAKAGAWA, H., Y. YONEMURA, H. YAMAMOTO, T. SATO, N. OGURA, R. SATO. 1985. Spinach nitrate reductase. Purification, molecular weight and subunit composition. Plant Physiol. 77: 124–128.CrossRefGoogle Scholar
  20. 20.
    FIDO, R.J. 1987. Purification of nitrate reductase from spinach (Spinacea oleracea L.) by immunoaffinity chromatography using a monoclonal antibody. Plant Sci. (Shannon) 50: 111–115.CrossRefGoogle Scholar
  21. 21.
    CAMPBELL, W.H. 1988. Structure and regulation of nitrate reductase in higher plants. op. cit. Reference 4Google Scholar
  22. 22.
    NOTTON, B.A. 1988. Immunology of nitrate reductase with special reference to higher plants. Op. cit. Reference 4Google Scholar
  23. 23.
    STREIT, L., B.A. MARTIN, J.E. HARPER. 1987. A method for the separation and partial purification of the three forms of nitrate reductase present in wild-type soybean leaves. Plant Physiol. 84: 654–657.CrossRefGoogle Scholar
  24. 24.
    STEWART, G.R., J.O. OREBAMJO. 1979. Some unusual characteristics of nitrate reduction in Erythrina senegalensis DC. New Phytol. 83: 311–319.CrossRefGoogle Scholar
  25. 25.
    DAILEY, F.A., T.M. KUO, R.L. WARNER. 1982. Pyridine nucleotide specificity of barley nitrate reductase. Plant Physiol. 69: 1196–1199.CrossRefGoogle Scholar
  26. 26.
    DAILEY, F.A., R.L. WARNER, D.A. SOMERS, A. KLEINHOFS. 1982. Characteristics of a nitrate reductase in a barley mutant deficient in NADH nitrate reductase. Plant Physiol. 69: 1200–1204.CrossRefGoogle Scholar
  27. 27.
    HARKER, A.R., K.R. NARAYANAN, R.L. WARNER, A. KLEINHOFS. 1986. NAD(P)H bispecific nitrate reductase in barley leaves: partial purification and characterization. Phytochemistry 25: 1275–1279.CrossRefGoogle Scholar
  28. 28.
    REDINBAUGH, M.G., W.H. CAMPBELL. 1981. Purification and characterization of NAD(P)H:nitrate reductase and NADH:nitrate reductase from corn roots. Plant Physiol. 68: 115–120.CrossRefGoogle Scholar
  29. 29.
    GEWITZ, H.-S., J. PIEFKE, B. VENNESLAND. 1981. Purification and characterization of demolybdo nitrate reductase (NADH-cytochrome c oxidoreductase) Chlorella vulgaris. J. Biol. Chem. 256: 11527–11531.Google Scholar
  30. 30.
    GIRI, L., C.S. RAMADOSS. 1979. Physical studies on assimilatory nitrate reductase from Chlorella vulgaris. J. Biol. Chem. 254: 11703–11712.Google Scholar
  31. 31.
    SoLOMONSON, L.P., M.J. McCREERY. 1986. Radiation inactivation of assimilatory NADH:nitrate reductase from Chlorella. Catalytic and physical sizes of functional units. J. Biol. Chem. 261: 806–810.Google Scholar
  32. 32.
    SOLOMONSON, L.P., G.H. LORIMER, R.L. HALL, R. BORCHERS, J.L. BAILEY. 1975. Reduced nicotinamide adenine dinucleotide-nitrate reductase of Chlorella vulgaris. J. Biol. Chem. 250: 4120–4127.Google Scholar
  33. 33.
    PAN, S.-S., A. NASON. 1978. Purification and characterization of homogeneous assimilatory reduced nicotinamide adenine dinucleotide phosphate-nitrate reductases from Neurospora crassa. Biochim. Biophys. Acta 523: 297–313.Google Scholar
  34. 34.
    RAJAGOPALAN, K.V. 1988. Chemistry and biology of the molybdenum cofactor. Op. cit. Reference 4Google Scholar
  35. 35.
    PIENKOS, T., V.K. SHAH, W.J. BRILL. 1977. Molybdenum cofactors from molybdoenzymes and in vitro reconstitution of nitrogenase and nitrate reductase. Proc. Natl. Acad. Sci. USA 74: 5468–5471.ADSCrossRefGoogle Scholar
  36. 36.
    GARRETT, R.H., A. NASON. 1967. Involvement of a b-type cytochrome in the assimilatory nitrate reductase of Neurospora crassa. Proc. Natl. Acad. Sci. USA 58: 1603–1610.ADSCrossRefGoogle Scholar
  37. 37.
    NOTTON, B.A., R.J. FIDO, E.J. HEWITT. 1977. The presence of functional haem in a higher plant nitrate reductase. Plant Sci. Lett. 8: 165–170.CrossRefGoogle Scholar
  38. 38.
    MENDEL, R.R., A.J. MÜLLER. 1980. Comparative characterization of nitrate reductase from wild type and molybdenum cofactor-defective cell cultures of Nicotiana tabacum. Plant Sci. Lett. 18: 277–288.CrossRefGoogle Scholar
  39. 39.
    SMARRELLI, J., JR., W.H. CAMPBELL. 1983. Heavy metal inactivation and chelator stimulation of higher plant nitrate reductase. Biochim. Biophys. Acta 742: 435–445.CrossRefGoogle Scholar
  40. 40.
    SOMERS, D.A., T. KUO, A. KLEINHOFS, R.L. WARNER. 1982. Barley nitrate reductase contains a functional cytochrome b557. Plant Sci. Lett. 24: 261–265.CrossRefGoogle Scholar
  41. 41.
    GARRETT, R.H., A. NASON. 1969. Further purification and properties of Neurospora nitrate reductase. J. Biol. Chem. 244: 2870–2882.Google Scholar
  42. 42.
    HORNER, R.D. 1983. Purification and comparison of nit-1 and wild-type NADPH:nitrate reductases of Neurospora crassa. Biochim. Biophys. Acta 744: 7–15.CrossRefGoogle Scholar
  43. 43.
    RENOSTO, F., N.D. SCHMIDT, I.H. SEGEL. 1982. Nitrate reductase from Penicillium chrysogenum: the reduced flavin-adenine dinucleotide-dependent reaction. Arch. Biochem. Biophys. 219: 12–20.CrossRefGoogle Scholar
  44. 44.
    RENOSTO, F., D.M. ORNITZ, D. PETERSON, I.H. SEGEL. 1981. Nitrate reductase from Penicillium chrysogenum. Purification and kinetic mechanism. J. Biol. Chem. 256: 8616–8625.Google Scholar
  45. 45.
    JONES, P.W., M.N. MHUIMHUEACHAIN. 1985. The activity and stability of wheat nitrate reductase in vitro. Phytochemistry 24: 385–392.CrossRefGoogle Scholar
  46. 46.
    NOTTON, B.A., E.J. HEWITT. 1979. Structure and properties of higher plant nitrate reductase, especially Spinacea oleracea. In Nitrogen Assimilation in Plants. (E.J. Hewitt, C.V. Cutting, eds.), Academic Press, New York, pp. 227–244.Google Scholar
  47. 47.
    CAMPBELL, W.H., J.L. REMMLER. 1986. Regulation of corn leaf nitrate reductase. I. Immunochemical methods for analysis of the enzyme’s protein component. Plant Physiol. 80: 435–441.CrossRefGoogle Scholar
  48. 48.
    NAKAGAWA, H., M. POULLE, A. OAKS. 1984. Characterization of nitrate reductase from corn leaves (Zea mays cv W64A x W182E). Two molecular forms of the enzyme. Plant Physiol. 75: 285–289.CrossRefGoogle Scholar
  49. 49.
    STREIT, L., R.S. NELSON, J.E. HARPER. 1985. Nitrate reductases from wild-type and nr1-mutant soybean (Glycine max [L.] Merr.) leaves. Plant Physiol. 78: 80–84.CrossRefGoogle Scholar
  50. 50.
    VAUGHN, K.C., S.O. DUKE, E.A. FUNKHOUSER. 1984. Immunochemical characterization and localization of nitrate reductase in non-flurazon-treated soybean cotyledons. Physiol. Plant 62: 481–484.CrossRefGoogle Scholar
  51. 51.
    HAMAT, H.B. 1987. Molecular characterization of nitrate reductase genes in rice (Oryza sativa L.). Dissertation, Washington State University, Pullman, 98 pp.Google Scholar
  52. 52.
    CAMPBELL, W.H. 1978. Isolation of NAD(P)H:nitrate reductase from the scutellum of maize. Z. Pflanzenphysiol. 88: 357–361.Google Scholar
  53. 53.
    WARNER, R.L., K.R. NARAYANAN, A. KLEINHOFS. 1987 Inheritance and expression of NAD(P)H nitrate reductase in barley. Theor. Appl. Genet. 74: 714–717.CrossRefGoogle Scholar
  54. 54.
    HOWARD, W.D., L.P. SOLOMONSON. 1981. Kinetic mechanism of assimilatory NADH:nitrate reductase from Chlorella. J. Biol. Chem. 256: 12725–12730.Google Scholar
  55. 55.
    HOWARD, W.D., L.P. SOLOMONSON. 1982. Quaternary structure of assimilatory NADH:nitrate reductase from Chlorella. J. Biol. Chem. 257: 10243–10250.Google Scholar
  56. 56.
    SOLOMONSON, L.P., M.J. BARBER, A.P. ROBBINS, A. OAKS. 1986. Functional domains of assimilatory NADH: nitrate reductase from Chlorella. J. Biol. Chem. 261: 11290–11294.Google Scholar
  57. 57.
    CAMPBELL, W.H., M.G. REDINBAUGH. 1984. Ferric-citrate reductase activity of nitrate reductase and its role in iron assimilation by plants. J. Plant Nutr. 7: 799–806.CrossRefGoogle Scholar
  58. 58.
    BARBER, M.J., L.P. SOLOMONSON. 1986. The role of the essential sulfhydryl group in assimilatory NADH: nitrate reductase of Chlorella. J. Biol. Chem. 261: 4562–4567.Google Scholar
  59. 59.
    OOSTINDIER-BRAAKSMA, F.J., W.J. FEENSTRA. 1973. Isolation and characterization of chlorate-resistant mutants of Arabidopsis thaliana. Mutat. Res. 19: 175–185.CrossRefGoogle Scholar
  60. 60.
    MENDEL, R.R., A.J. MÜLLER. 1976. A common genetic determinant of xanthine dehydrogenase and nitrate reductase in Nicotiana tabacum. Biochem. Physiol. Pflanz. 170: 538–541.Google Scholar
  61. 61.
    MENDEL, R.R., A.J. MÜLLER. 1979. Nitrate reductase deficient mutant cell lines of Nicotiana tabacum. Mol. Gen. Genet. 177: 145–153.CrossRefGoogle Scholar
  62. 62.
    MÜLLER, A.J., R. GRAFE. 1978. Isolation and characterization of cell lines of Nicotiana tabacum lacking nitrate reductase. Mol. Gen. Genet. 161: 67–76.CrossRefGoogle Scholar
  63. 63.
    WARNER, R.L., C.J. LIN, A. KLEINHOFS. 1977. Nitrate reductase-deficient mutants in barley. Nature 269: 406–407.ADSCrossRefGoogle Scholar
  64. 64.
    TOKAREV, B.I., V.K. SHUMNY. 1977. Detection of barley mutants with low level of nitrate reductase activity after the seed treatment with ethyl-methanesulphonate. Genetika 13: 2097–2103.Google Scholar
  65. 65.
    KLEINHOFS, A., T.M. KUO, R.L. WARNER. 1980. Characterization of nitrate reductase-deficient barley mutants. Mol. Gen. Genet. 177: 421–425.CrossRefGoogle Scholar
  66. 66.
    KLEINHOFS, A., R.L. WARNER, J.M. LAWRENCE, J.M. MELZER, J.M. JETER, D.A. KUDRNA. 1988. Molecular genetics of nitrate reductase in barley. Op. cit. Reference 4Google Scholar
  67. 67.
    KUO, T.M., A. KLEINHOFS, D. SOMERS, R.L. WARNER. 1981. Antigenicity of nitrate reductase-deficient mutants in Hordeum vulgare L. Mol. Gen. Genet. 181: 20–23.CrossRefGoogle Scholar
  68. 68.
    SOMERS, D.A., T.M. KUO, A. KLEINHOFS, R.L. WARNER. 1983. Nitrate reductase-deficient mutants in barley: immunoelectrophoretic characterization. Plant Physiol. 71: 145–149.CrossRefGoogle Scholar
  69. 69.
    NARAYANAN, K.R., A.J. MÜLLER, A. KLEINHOFS, R.L. WARNER. 1984. In vitro reconstitution of NADH: nitrate reductase in nitrate reductase-deficient mutants of barley. Mol. Gen. Genet. 197: 358–362.CrossRefGoogle Scholar
  70. 70.
    KUO, T.M., A. KLEINHOFS, D.A. SOMERS, R.L. WARNER. 1984 Nitrate reductase-deficient mutants in barley: enzyme stability and peptide mapping. Phytochemistry 23: 229–232.CrossRefGoogle Scholar
  71. 71.
    MENDEL, R.R., Z.A. ALIKULOV, N.P. LVOV, A.J. MÜLLER. 1981. Presence of the molybdenum-cofactor in nitrate reductase-deficient mutant cell lines of Nicotiana tabacum. Mol. Gen. Genet. 181: 395–399.CrossRefGoogle Scholar
  72. 72.
    MÜLLER, A.J., R.R. MENDEL. 1982. Nitrate reductase-deficient tobacco mutants and the regulation of nitrate assimilation. In Plant Tissue Culture 1982. (A. Fujiwara, ed.), Abe Photo Printing Co., Ltd., Tokyo, pp. 233–234.Google Scholar
  73. 73.
    MÜLLER, A.J. 1983. Genetic analysis of nitrate reductase-deficient tobacco plants regenerated from mutant cells. Evidence for duplicate structural genes. Mol. Gen. Genet. 192: 275–281.CrossRefGoogle Scholar
  74. 74.
    DE VRIES, S.E., R. DIRKS, R.R. MENDEL, J.G. SCHAART, W.J. FEENSTRA. 1986. Biochemical characterization of some nitrate reductase deficient mutants of Nicotiana plumbaginifolia. Plant Sci. (Shannon) 44: 105–110.CrossRefGoogle Scholar
  75. 75.
    DIRKS, R., I. NEGRUTIU, V. SIDOROV, M. JACOBS. 1985. Complementational analysis by somatic hybridization and genetic crosses of nitrate reductase-deficient mutants of Nicotiana plumbaginifolia. Evidence for a new category of cnx mutants. Mol. Gen. Genet. 201: 339–343.CrossRefGoogle Scholar
  76. 76.
    MARTON, L., T.M. DUNG, R.R. MENDEL, P. MALIGA. 1982. Nitrate reductase deficient cell lines from haploid protoplast cultures of Nicotiana plumbaginifolia. Mol. Gen. Genet. 186: 301–304.CrossRefGoogle Scholar
  77. 77.
    MARTON, L., V. SIDOROV, G. BAISINI, P. MALIGA. 1982. Complementation in somatic hybrids indicates four types of nitrate reductase deficient lines in Nicotiana plumbaginifolia. Mol. Gen. Genet. 187: 1–3.CrossRefGoogle Scholar
  78. 78.
    NEGRUTIU, I., R. DIRKS, M. JACOBS. 1983. Regeneration of fully nitrate reductase-deficient mutants from protoplast culture of Nicotiana plumbaginifolia (Viviani). Theor. Appl. Genet. 66: 341–347.CrossRefGoogle Scholar
  79. 79.
    GABARD, J., A. MARION-POLL, I. CHEREL, C. MEYER, A. MÜLLER, M. CABOCHE. 1987. Isolation and characterization of Nicotiana plumbaginifolia nitrate reductase-deficient mutants: genetic and biochemical analysis of the NIA complementation group. Mol. Gen. Genet. 209: 596–606.CrossRefGoogle Scholar
  80. 80.
    BRAAKSMA, F.J., W.J. FEENSTRA. 1982. Isolation and characterization of nitrate reductase-deficient mutants of Arabidopsis thaliana. Theor. Appl. Genet. 64: 83–90.CrossRefGoogle Scholar
  81. 81.
    BRAAKSMA, F.J., W.J. FEENSTRA. 1982. Nitrate reduction in the wild type and a nitrate reductase deficient mutant of Arabidopsis thaliana. Physiol. Plant. 54: 351–360.CrossRefGoogle Scholar
  82. 82.
    BRAAKSMA, F.J., W.J. FEENSTRA. 1982. Reverse mutants of the nitrate reductase-deficient mutant B25 of Arabidopsis thaliana. Theor. Appl. Genet. 61: 263–271.Google Scholar
  83. 83.
    STREIT, L., J.E. HARPER. 1986. Biochemical characterization of soybean mutants lacking constitutive NADH:nitrate reductase. Plant Physiol. 81: 593–596.CrossRefGoogle Scholar
  84. 84.
    ROBIN, P., L. STREIT, W.H. CAMPBELL, J.E. HARPER. 1985. Immunochemical characterization of nitrate reductase forms from wild-type (cv Williams) and nr1 mutant soybean. Plant Physiol. 77: 232–236.CrossRefGoogle Scholar
  85. 85.
    RYAN, S.A., R.S. NELSON, J.E. HARPER. 1983. Soybean mutants lacking constitutive nitrate reductase activity. II. Nitrogen assimilation, chlorate resistance and inheritance. Plant Physiol. 72: 510–514.CrossRefGoogle Scholar
  86. 86.
    NELSON, R.S., S.A. RYAN, J.E. HARPER. 1983. Soybean mutants lacking constitutive nitrate reductase activity. I. Selection and initial plant characterization. Plant Physiol. 72: 503–509.CrossRefGoogle Scholar
  87. 87.
    CARROLL, B.J., P.M. GRESSHOFF. 1986. Isolation and initial characterization of constitutive nitrate reductase-deficient mutants NR328 and NR345 of soybean (Glycine max). Plant Physiol. 81: 572–576.CrossRefGoogle Scholar
  88. 88.
    PATEMAN, J.A., D.J. COVE, B.M. REVER, D.B. ROBERTS. 1964. A common co-factor for nitrate reductase and xanthine dehydrogenase which also regulates the synthesis of nitrate reductase. Nature 201: 58–60.ADSCrossRefGoogle Scholar
  89. 89.
    MENDEL, R.R., A.J. MÜLLER. 1985. Repair in vitro of nitrate reductase-deficient tobacco mutants (cnxA) by molybdate and by molybdenum cofactor. Planta 163: 370–375.CrossRefGoogle Scholar
  90. 90.
    MENDEL, R.R., L. MARTON, A.J. MÜLLER. 1986. Comparative biochemical characterization of mutants at the nitrate reductase/molybdenum cofactor loci cnxA, cnxB and cnxC of Nicotiana plumbaginifolia. Plant Sci. (Shannon) 43: 125–129.CrossRefGoogle Scholar
  91. 91.
    XUAN, L.T., R. GRAFE, A.J. MÜLLER. 1983. Complementation of nitrate reductase-deficient mutants in somatic hybrids between Nicotiana species. In Protoplasts 1983. (I. Potrykus, C.T. Harms, A. Hinnen, P.S. King, R.D. Shillito, eds.), Berkhauser Verlag, pp. 75–76.Google Scholar
  92. 92.
    CABOCHE, M. 1987. Nitrogen, carbohydrate and zinc requirements for the efficient induction of shoot morphogenesis from protoplast-derived colonies of Nicotiana plumbaginifolia. Plant Cell Tissue Organ Cult. 8: 197–206.CrossRefGoogle Scholar
  93. 93.
    CABOCHE, M., I. CHEREL, F. GALANGAU, M.A. GRANDBASTIEN, C. MEYER, T. MOUREAUX, F. PELSY, P. ROUZE, H. VAUCHERET, F. VEDELE, M. VINCENTZ. 1988. Molecular genetics of nitrate reduction in Nicotiana. Op. cit. Reference 4Google Scholar
  94. 94.
    GABARD, J., F. PELSY, A. MARION-POLL, M. CABOCHE, I. SAALBACH, R. GRAFE, A.J. MÜLLER. 1988. Genetic analysis of nitrate reductase deficient mutants of Nicotiana plumbaginifolia: evidence for six complementation groups among 70 classified molybdenum cofactor deficient mutants. Mol. Gen. Genet. 213: 206–213.CrossRefGoogle Scholar
  95. 95.
    COVE, D.J. 1979. Genetic studies of nitrate assimilation in Aspergillus nidulans. Biol. Rev. 54: 291–327.CrossRefGoogle Scholar
  96. 96.
    ARST, H.N., JR., D.W. TOLLERVEY, H.M. SEALY-LEWIS. 1982. A possible regulatory gene for the molybdenum-containing cofactor in Aspergillus nidulans. J. Gen. Microbiol. 128: 1083–1093.Google Scholar
  97. 97.
    REISS, J., A. KLEINHOFS, W. KLINGMÜLLER. 1987. Cloning of seven differently complementing DNA fragments with chl functions from Escherichia coli K12. Mol. Gen. Genet. 206: 352–355.CrossRefGoogle Scholar
  98. 98.
    JACOBSEN, E., F.J. BRAAKSMA, W.J. FEENSTRA. 1984. Determination of xanthine dehydrogenase activity in nitrate reductase deficient mutants of Pisum sativum and Arabidopsis thaliana. Z. Pflanzenphysiol. 113: 183–188.Google Scholar
  99. 99.
    SCHOLTEN, J.H., S.E. DE VRIES, H. NIJDAM, W.J. FEENSTRA. 1985. Nitrate reductase deficient cell lines from diploid cell cultures and lethal mutant M2 plants of Arabidopsis thaliana. Theor. Appl. Genet. 71: 263–271.CrossRefGoogle Scholar
  100. 100.
    HADLEY, H.H., T. HYMOWITZ. 1973. Speciation and cytogenetics. In Soybeans: Improvement, Production and Uses. (B.E. Caldwell, ed.), American Society of Agronomy, Inc., Madison, pp. 97–116.Google Scholar
  101. 101.
    MELZER, J.M., A. KLEINHOFS, D.A. KUDRNA, R.L. WARNER, T.K. BLAKE. 1988. Genetic mapping of the barley nitrate reductase-deficient narl and nar2 loci. Theor. Appl. Genet. 75: 767–771.CrossRefGoogle Scholar
  102. 102.
    KLEINHOFS, A., S. CHAO, P.J. SHARP. 1988. Mapping of nitrate reductase genes in barley and wheat. In Proceedings of the Seventh International Wheat Genetics Symposium, Cambridge (in press).Google Scholar
  103. 103.
    CHENG, C.L., J. DEWDNEY, A. KLEINHOFS, H.M. GOODMAN. 1986. Cloning and nitrate induction of nitrate reductase mRNA. Proc. Natl. Acad. Sci. USA 83: 6825–6828.ADSCrossRefGoogle Scholar
  104. 104.
    YOUNG, R.A., R.W. DAVIS. 1983. Efficient isolation of genes by using antibody probes. Proc. Natl. Acad. Sci. USA 80: 1194–1198.ADSCrossRefGoogle Scholar
  105. 105.
    HUYNH, T.V., R.A. YOUNG, R.H. DAVIS. 1985. Construction and screening cDNA libraries in lambda gt 10 and lambda gt 11. In DNA Cloning: A Practical Approach. (D.M. Glover, ed.), IRL Press, Washington, D.C., Vol. 1, pp. 49–78.Google Scholar
  106. 106.
    CRAWFORD, N.M., W.H. CAMPBELL, R.W. DAVIS. 1986. Nitrate reductase from squash: cDNA cloning and nitrate regulation. Proc. Natl. Acad. Sci. USA 83: 8073–8076.ADSCrossRefGoogle Scholar
  107. 107.
    CALZA, R., E. HUTTNER, M. VINCENTZ, P. ROUZE, F. GALANGAU, H. VAUCHERET, I. CHEREL, C. MEYER, J. KRONENBERGER, M. CABOCHE. 1987. Cloning of DNA fragments complementary to tobacco nitrate reductase mRNA and encoding epitopes common to the nitrate reductases from higher plants. Mol. Gen. Genet. 209: 552–562.CrossRefGoogle Scholar
  108. 108.
    LE, K.H.D., F. LEDERER. 1983. On the presence of a heme-binding domain homologous to cytochrome b5 in Neurospora crassa assimilatory nitrate reductase. EMBO J. 2: 1909–1914Google Scholar
  109. 109.
    GALANGAU, F., I. CHEREL, M. DENG, C. MEYER, T. MAUREAUX, P. ROUZE, H. VAUCHERET, F. VEDELE, M. VINCENTZ, M. CABOCHE. 1988. Nitrate reductase expression in tobacco and tomato. Curr. Top. Plant Biochem. Physiol. 7: 26–34.Google Scholar
  110. 110.
    CRAWFORD, N.M., M. SMITH, D. BELLISSIMO, R.W. DAVIS. 1988. Sequence and nitrate regulation of the Arabidopsis thaliana mRNA encoding nitrate reductase: a metalloflavoprotein with three functional domains. Proc. Natl. Acad. Sci. USA 85: 5006–5010.ADSCrossRefGoogle Scholar
  111. 111.
    CRAWFORD, N.M., R.W. DAVIS. 1988. Molecular analysis of nitrate regulation of nitrate reductase in squash and Arabidopsis. Op. cit. Reference 4Google Scholar
  112. 112.
    HACKETT, C.S., W.B. NOVAO, J. OZOLS, P. STRITTMATTER. 1986. Identification of the essential cysteine residue of NADH cytochrome b5 reductase. J. Biol. Chem. 261: 9854–9857.Google Scholar
  113. 113.
    GUIARD, B., F. LEDERER. 1979. Amino acid sequence of the ‘b 5-like’ heme-binding domain from chicken sulfite oxidase. Eur. J. Biochem. 100: 441–453.CrossRefGoogle Scholar
  114. 114.
    KLEINHOFS, A., R.L. WARNER, H.B. HAMAT, M. JURICEK, C. HUANG, K. SCHNORR. 1988. Molecular genetics of barley and rice nitrate reductases. Curr. Top. Plant Biochem. Physiol. 7: 35–42.Google Scholar
  115. 115.
    GOWRI, G., V.K. RAJASEKHAR, W.H. CAMPBELL. 1987. Isolation of cDNA clones for corn leaf NADH nitrate reductase. Plant Physiol. 83: sl7.Google Scholar
  116. 116.
    HAGEMAN, R.H., D. FLESHER. 1960. Nitrate reductase activity in corn seedlings as affected by light and nitrate content of nutrient media. Plant Physiol. 35: 700–708.CrossRefGoogle Scholar
  117. 117.
    BEEVERS, L., R.H. HAGEMAN. 1969. Nitrate reduction in higher plants. Annu. Rev. Plant Physiol. 20: 495–522.CrossRefGoogle Scholar
  118. 118.
    BEEVERS, L., R.H. HAGEMAN. 1980. Nitrate and nitrite reduction. In The Biochemistry of Plants. (P.K. Stumpf, E.E. Conn, eds.), Amino Acids and Derivatives, B.J. Miflin, ed., Academic Press, New York, Vol. 5, pp. 115–168.Google Scholar
  119. 119.
    BEEVERS, L., R.H. HAGEMAN. 1983. Uptake and reduction of nitrate: bacteria and higherplants. In Inorganic Plant Nutrition. (A. Lauchli, R.L. Bielesk, eds.), Springer-Verlag, Vienna, pp. 351–375.Google Scholar
  120. 120.
    HEWITT, E.J. 1975. Assimilatory nitrate-nitrite reduction. Annu. Rev. Plant Physiol. 26: 73–100.CrossRefGoogle Scholar
  121. 121.
    HEWITT, E.J., D.P. HUCKLESBY, B.A. NOTTON. 1976. Nitrate assimilation. In Plant Biochemistry. (J. Bonner, J.E. Varner, eds.), Academic Press, New York, pp. 633–681.Google Scholar
  122. 122.
    GUERRERO, M.G., J.M. VEGA, M. LOSADA. 1981. The assimilatory nitrate-reducing system and its regulation. Annu. Rev. Plant Physiol. 32: 169–204.CrossRefGoogle Scholar
  123. 123.
    LOSADA, M., M.G. GUERRERO. 1979. The photosynthetic reduction of nitrate and its regulation. In Photosynthesis in Relation to Model Systems. (J. Barber, ed.), Elsevier, Amsterdam, pp. 365–408.Google Scholar
  124. 124.
    SRIVASTAVA, H.S. 1980. Regulation of nitrate reductase activity in higher plants. Phytochemistry 19: 725–733.CrossRefGoogle Scholar
  125. 125.
    ULLRICH, W.R. 1983. Uptake and reduction of nitrate: algae and fungi. Op. cit. Reference 119, pp. 376–397.Google Scholar
  126. 126.
    WALLACE, W., A. OAKS. 1986. Role of proteinases in the regulation of nitrate reductase. In Plant Proteolytic Enzymes. (M. Dalling, ed.), CRC Press, Boca Raton, Vol. II, pp. 81–89.Google Scholar
  127. 127.
    SOMERS, D.A., T.-M. KUO, A. KLEINHOFS, R.L. WARNER, A. OAKS. 1983. Synthesis and degradation of barley nitrate reductase. Plant Physiol. 72: 949–952.CrossRefGoogle Scholar
  128. 128.
    REMMLER, J.L., W.H. CAMPBELL. 1986. Regulation of corn leaf nitrate reductase. II. Synthesis and turnover of the enzyme’s activity and protein. Plant Physiol. 80: 442–447.CrossRefGoogle Scholar
  129. 129.
    MAKI, H., K. YAMAGISHI, T. SATO, N. OGURA, H. NAKAGAWA. 1986. Regulation of nitrate reductase activity in cultured spinach cells as studied by an enzyme-linked immunosorbent assay. Plant Physiol. 82: 739–741.CrossRefGoogle Scholar
  130. 130.
    ZIELKE, H.R., P. FILNER. 1971. Synthesis and turnover of nitrate reductase induced by nitrate in cultured tobacco cells. J. Biol. Chem. 246: 1772–1779.Google Scholar
  131. 131.
    SOUALMI-BONJEMAA, K., A. MOYSE, M.-L CHAMPIGNY. 1985. Modulation of nitrate reductase in wheat shoot and root by nitrate. Physiol. Veg. 23: 869–875.Google Scholar
  132. 132.
    AMY, N.K., R.H. GARRETT. 1979. Immunoelectrophoretic determination of nitrate reductase in Neurospora crassa. Anal. Biochem. 95: 97–107.CrossRefGoogle Scholar
  133. 133.
    LORIMER, G.H., H.S. GEWITZ, W. VOLKER, L.P. SOLOMONSON, B. VENNESLAND. 1974. The presence of bound cyanide in the naturally inactivated form of nitrate reductase of Chlorella vulgaris. J. Biol. Chem. 249: 6074–6079.Google Scholar
  134. 134.
    VENNESLAND, B., C. JETSCHMANN. 1971. Nitrate reductase of Chlorella pyrenoidosa. Biochim. Biophys. Acta 227: 554–564.Google Scholar
  135. 135.
    FUNKHOUSER, E.A., T.-C. SHEN, R. ACKERMANN. 1980. Synthesis of nitrate reductase in Chlorella. I. Evidence for an inactive protein precursor. Plant Physiol. 65: 939–943.CrossRefGoogle Scholar
  136. 136.
    FUNKHOUSER, E.A., C.S. RAMADOSS. 1980. Synthesis of nitrate reductase in Chlorella. II. Evidence for synthesis in ammonia-grown cells. Plant Physiol. 65: 944–948.CrossRefGoogle Scholar
  137. 137.
    SOLOMONSON, L.P., K. JETSCHMANN, B. VENNESLAND. 1973. Reversible inactivation of the nitrate reductase of Chlorella vulgaris Beijerinck. Biochim. Biophys. Acta 309: 32–43.Google Scholar
  138. 138.
    PISTORIUS, E.K., H.-S. GEWITZ, H. VOSS, B. VENNESLAND. 1976. Reversible inactivation of nitrate reductase in Chlorella vulgaris in vivo. Planta 128: 73–80.CrossRefGoogle Scholar
  139. 139.
    OAKS, A., M. POULLE, J.V.J. GOODFELLOW, L.A. CASS, H. DEISING. 1988. The role of nitrate and ammonium ions and light on the induction of nitrate reductase in maize leaves. Plant Physiol. 88: 1067–1072.CrossRefGoogle Scholar
  140. 140.
    MELZER, J.M. 1987. Effect of nitrate, light and mutation on nitrate reductase messenger RNA in barley. Dissertation, Washington State University, Pullman, 118 pp.Google Scholar
  141. 141.
    DUKE, S.H., S.O. DUKE. 1984. Light control of extractable nitrate reductase activity in higher plants. Physiol. Plant. 62: 485–493.CrossRefGoogle Scholar
  142. 142.
    GALANGAU, F., F. DANIEL-VEDELE, T. MOUREAUX, M.-F. DORBE, M.-T. LEYDECKER, M. CABOCHE. 1988. Expression of the nitrate reductase genes from tobato and tobacco in relation to light-dark regimes and the nitrate supply. Plant Physiol. 88: 383–388.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Andris Kleinhofs
    • 1
  • Robert L. Warner
    • 1
  • James M. Melzer
    • 2
  1. 1.Department of Agronomy and Soils and Program in Genetics and Cell BiologyWashington State UniversityPullmanUSA
  2. 2.Plant Genetic Engineering LaboratoryNew Mexico State UniversityLas CrucesUSA

Personalised recommendations