Guanidines 2 pp 213-222 | Cite as

The Involvement Of Catecholamines In The Seizure Mechanism Induced By α-Guanidinoglutaric Acid In Rats

  • Hiroshi Shiraga
  • Midori Hiramatsu
  • Akitane Mori


Guanidino compounds, e.g., γ-guanidinobutyric acid1, guanidinoacetic acid2, N-acetylarginine3, taurocyamine4, methylguanidine5 and homoarginine 6, are known to induce epileptic seizures when administered intracisternally into rabbits. α-Guanidinoglutaric acid (α-GGA) is a guanidino compound first found in the cobalt-induced epileptogenic focus tissue in the cerebral cortex of cats7. α-GGA was also found to induce epileptic seizures when administered into the sensory motor cortex of rabbits8 and when administered intraventricularly into rats9.


Epileptic Seizure Medulla Oblongata Audiogenic Seizure Seizure Susceptibility Activate Aluminum Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jinnai, D., Sawai, A. and Mori, A., γ-Guanidinobutyric acid as a convulsive substance, Nature 212 (1966) 617.CrossRefGoogle Scholar
  2. 2.
    Jinnai, D., Mori, A., Mukawa, J., Ohkusu, H., Hosotani, M., Mizuno, A. and Tye, L.C., Biological and physiological studies on guanidino compounds induced convulsion, Jpn. J. Brain Physiol. 106 (1969) 3368–3673.Google Scholar
  3. 3.
    Ohkusu, H. and Mori, A., Isolation of a-N-acetyl-L-arginine from cattle brain, J. Neurochem. 16 (1969) 1485–1486.CrossRefGoogle Scholar
  4. 4.
    Mizuno, A., Mukawa, J., Kobayashi, K. and Mori, A., Convulsive activity of taurocyamine in cats and rabbits, IRCS Med. Sci. 3 (1975) 385.Google Scholar
  5. 5.
    Matsumoto, M., Kobayashi, K., Kishikawa, H. and Mori, A., Convulsive activity of methylguanidine in cats and rabbits, IRCS Med. Sci. 4 (1976) 65.Google Scholar
  6. 6.
    Yokoi, I., Toma, J. and Mori, A., The effect of homoarginine on the EEG of rats, Neurochem. Pathol. 2 (1984) 295–300.Google Scholar
  7. 7.
    Mori, A., Akagi, M., Katayama, Y. and Watanabe, Y., a-Guanidinbglutaric acid in cobalt-induced epileptogenic cerebral cortex of cats, J. Neurochem. 35 (1980) 603–605.CrossRefGoogle Scholar
  8. 8.
    Mori, A., Watanabe Y., Shindo, S., Akagi, M. and Hiramatsu, M., α- Guanidinoglutaric acid and epilepsy, in: “Advances in Experimental Medicine and Biology, Vol. 153, Urea Cycle Diseae”, A. Lowenthal, A. Mori and B. Marescau Eds., Plenum Press, New York (1982) pp. 419–426.Google Scholar
  9. 9.
    Shiraga, H., Hiramatsu, M. and Mori, A., Convulsive activity of α- guanidinoglutaric acid and the possible involvement of 5-hydroxy- tryptamine in the α-guanidinoglutaric acid-induced seizure mechanism, J. Neurochem. 47 (1986) 1832–1836.CrossRefGoogle Scholar
  10. 10.
    Chen, G., Ensor, C.R. and Bohner, B., A facilitation of reserpine on the central nervous system, Proc. Soc. Exp. Biol. Med. 86 (1954) 507–510.Google Scholar
  11. 11.
    Scudder, C.L., Karczmar, A.G., Everett, G.M., Gibson, J.E. and Rifkin, M., Brain catecholamines and serotonin levels in various strains and genera of mice and a possible interaction for the correlations of amine levels with electrschock latency and behavior, Int. J. Neuropharmacol. 5 (1966) 343–351.CrossRefGoogle Scholar
  12. 12.
    Schlesinger, K., Boggan, W. and Freedman, D.X., Genetics of audiogenic seizures: II. Effects of pharmacological manipulation of brain serotonin, norepinephrine and gammaaminobutyrlc acid, Life Sci. 7 (1968) 437–447.CrossRefGoogle Scholar
  13. 13.
    Azzaro, A.J., Wenger, G.R., Craig, C.R. and Stitzel, R.E., Reserpine- induced alterations in brain amines and their relationship to changes in the incidence of minimal electroshock seizures in mice, J. Pharmacol. Exp. Ther. 180 (1972) 558–568.Google Scholar
  14. 14.
    Mclntyre, D.C., Saari, M. and Pappas, B.A., Potentiation of amygdala kindling in adult or infant rats by injections of 6-hydroxydopamine, Exp. Neurol. 63 (1979) 527–544.CrossRefGoogle Scholar
  15. 15.
    Corcoran, M. and Mason, S.T., Role of forebrain catecholamines in amygdaloid kindling, Brain Res. 190 (1980) 473–484.CrossRefGoogle Scholar
  16. 16.
    Sato, M., Tomoda, T., Hikasa, N. and Qtsuki, S., Inhibition of amygdaloid kindling by chronic pretreatment with cocaine or methamphetamine, Epilepsia 21 (1980) 497–507.CrossRefGoogle Scholar
  17. 17.
    Jobe, P.C., Laird, H.E., Ko, K.H., Ray, T. and Daily, J.W., Abnormalities in monoamine levels in the central nervous system of the genetically epilepsy-prone rat, Epilepsia 23 (1982) 359–366.CrossRefGoogle Scholar
  18. 18.
    Weintraub, S.T., Stavinoha, W.B., Pike, R.L., Morgan, W.W., Modak, A. T., Koslow, S.H. and Blank, L., Evaluation of the necessity for rapid inactivation of brain enzymes prior to analysis of norepinephrine, dopamine and serotonin in the mouse, Life Sci. 17 (1975) 1423–1428.CrossRefGoogle Scholar
  19. 19.
    Glowfnski, J. and Iversen, L.L., Regional studies of catecholamines in the rat brain-I, J. Neurochem. 13 (1966) 655–669.CrossRefGoogle Scholar
  20. 20.
    Browning, R.A., Role of the brain-stem reticular formation in tonic- clonic seizures: lesion and pharmacological studies, Federation Proc. 44 (1985) 2425–2431.Google Scholar
  21. 21.
    Browning, R.A., Nelson, D.K., Mogharreban, N., Jobe, P.C. and Laird II, H.E., Effect of midbrain and pontine tegmental lesions on audiogenic seizures in genetically epilepsy-prone rats, Epilepsia 26 (1985) 175–183.CrossRefGoogle Scholar
  22. 22.
    Michelson, H.B. and Buterbaugh, G.G., Amygdala kindling in juvenile rats following neonatal administration of 6-hydroxydopamine, Exp. Neurol. 90 (1985) 588–593.Google Scholar
  23. 23.
    Stock, G. Klimpel, L., Sturm, V. and Schlor, K.-H., Resistance to tonic-, clonic seizures after amygdaloid kindling in cats, Exp. Neurol. 69 (1980) 239–246.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Hiroshi Shiraga
    • 1
  • Midori Hiramatsu
    • 1
  • Akitane Mori
    • 1
  1. 1.Department of NeurochemistryInstitute for Neurobiology Okayama University Medical SchoolOkayamaJapan

Personalised recommendations