Advertisement

Tomographic Image Reconstructing Using Systolic Array Alogrithms

  • Stephen G. Azevedo
  • Anthony J. De Groot
  • Daniel J. Schneberk
  • James M. Brase
  • Harry E. Martz
  • Anil K. Jain
  • K. Wayne Current
  • Paul J. Hurst

Abstract

In Computed Tomography (CT), two-dimensional (2-D) slices or three-imensional (3-D) volumes of an object are reconstructed from many projected line-integrals (usually x-ray transmission data) around the object. As the data collection capabilities and reconstruction algorithms for CT have become more sophisticated over the years, the demands on computer systems have become correspondingly greater. For example, cone-beam data acquisition of a single 2-D projection containing 1024 by 1024 resolution is now easily achievable in much less than 1 second. Accepting and processing a volume of data at those rates is impossible for most conventional computers. Also, recent limited-data reconstruction algorithms using iterative schemes between image and projection domains [1] require large amounts of very time-consuming calculations. In this case, repeated use of a constrained projection model (or the Radon transform, named after mathematician Johann Radon [2]) followed by a reconstruction algorithm (or inverse Radon transform) is used to converge on the correct answer.

Keywords

Systolic Array Radon Transform Backprojection Algorithm Projection Domain Compute Tomography Image Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. P. Medoff. Image Reconstruction from Limited Data: Theory and Applications in Computerized Tomography. In H. Stark, ed., Image Recovery Theory and Application, chapter 9, Academic Press, 1987.Google Scholar
  2. 2.
    Johann Radon. Über die Bestimmung von Funktionen durch ihre Integral werte längs gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften. Leipzig, Math.— Phys. KL, 69:262–267, 1917.Google Scholar
  3. 3.
    H. T. Kung and C. E. Leiserson. Systolic Arrays (for VLSI). In I. S. Duff and G. W. Stewart, eds., Sparse Matrix Proceedings 1978, pages 256–282, SIAM, 1979.Google Scholar
  4. 4.
    A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1989.Google Scholar
  5. 5.
    G. T. Herman. Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. Academic Press, 1980.Google Scholar
  6. 6.
    S. G. Azevedo. Model-based Computed Tomography for Nondestructive Evaluation. Technical Report UCID-21380, Lawrence Livermore National Laboratory, January 1988.Google Scholar
  7. 7.
    J. L. C. Sanz, E. B. Hinkle, and A. K. Jain. Radon and Projection Transform-Based Computer Vision. Springer-Verlag, Berlin, 1988.CrossRefGoogle Scholar
  8. 8.
    A. J. De Groot, S. G. Azevedo, D. J. Schneberk, E. M. Johansson, and S. R. Parker. A Systolic Array for Efficient Execution of the Radon and Inverse Radon Transforms. Proc. SPIE, Adv. Algs. and Arch, for Signal Proc. III, Vol. 975, Aug. 1988.Google Scholar
  9. 9.
    A. J. De Groot, E. M. Johansson, J. P. Fitch, C. W. Grant, and S. R. Parker. SPRINT — The Systolic Processor with a Reconfigurable Interconnection Network of Transputers. IEEE Transactions on Nuclear Science, NS-34(4):873–877, August 1987.CrossRefGoogle Scholar
  10. 10.
    W. B. Baringer, B. C. Richards, and R. W. Brodersen. A VLSI implementation of PPPE for real-time image processing in Radon space—Work in progress. In 1987 Workshop on Comp. Arch, for PAMI, Seattle, WA, Oct. 5–7 1987.Google Scholar
  11. 11.
    W. F. Jones, L. G. Byars, and M. E. Casey. Positron emission tomographic images and expectation maximization: A VLSI architecture for multiple iterations per second. In Proc. of IEEE Nucl. Sci. Symp., San Francisco, CA, 1987.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Stephen G. Azevedo
    • 1
  • Anthony J. De Groot
    • 1
  • Daniel J. Schneberk
    • 1
  • James M. Brase
    • 1
  • Harry E. Martz
    • 1
  • Anil K. Jain
    • 2
  • K. Wayne Current
    • 2
  • Paul J. Hurst
    • 2
  1. 1.Lawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Department of E.E.C.SUniversity of CaliforniaDavisUSA

Personalised recommendations