Charge Carrier Chemistry in Electroactive Polymers

  • Gary E. Wnekr


It has often been said in casual conversation that the field of conductive polymers is ‘materials limited,’ meaning simply that existing materials fail to meet one or more of the criteria deemed necessary for a given technological application. Such criteria may include low raw materials and production costs in order to be competitive with existing materials, reasonable processability and mechanical integrity, and perhaps semi-transparency and environmental stability. All are of course intimately linked to polymer chemistry, which is the science of the preparation and molecular-level characterization of macromolecules. The past several years have witnessed important accomplishments in the synthesis of conducting polymers and in the understanding of their molecular structures, and provide the basis for increasing our understanding of key issues such as conduction mechanisms and relationships between structure and physical properties.


Radical Cation Conductive Polymer Graft Copolymer Alkyl Halide Anionic Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Y. Jen, R. Oboodi, and R. L. Elsenbaumer, Polym. Mat. Sci. Eng., 53:79Google Scholar
  2. 2.
    M. A. Sato, S. Tanaka, and K. Kaeriyama, Synth. Metals, 14:289CrossRefGoogle Scholar
  3. 3.
    A. F. Diaz, J. Crowley, J. Bargon, G. P. Gardini, and J. B. Torrance, J. CrossRefGoogle Scholar
  4. 4.
    A. F. Diaz, J. Crowley, J. Bargon, G. p. Fardini, and J. B. Torrance, J. Electroanal. Chem. 121:355 (1981).Google Scholar
  5. 5.
    G. Odian, “Principles of Polymerization,” 2nd ed., Ch. 5, McGraw-Hill, New York (1981).Google Scholar
  6. 6.
    J. P. Kennedy and E. Marechal, “Carbocationic Polymerization,” Wiley-Interscience, New York (1982).Google Scholar
  7. 7.
    J. E. Frommer and R. R. Chance, Electrically Conductive Polymers, in: Encyclopedia of Polymer Science and Engineering, Vol. 5, 2nd ed., p. 462–507, Wiley, New York (1986).Google Scholar
  8. 8.
    T. C. Clarke, B. W. McQuillan, J. F. Rabolt, J. C. Scott, and G. B. Street, Mol. Cryst. Liq. Cryst., 83:1 (1982).CrossRefGoogle Scholar
  9. 9.
    P. Brant, D. Weber, R. Mowery, and R. Nowak, Polym. Prepr., 23 (1):98 (1982).Google Scholar
  10. 10.
    A. J. MacDiarmid and A. J. Heeger, Polym. Prepr., 23(1):98 (1982).CrossRefGoogle Scholar
  11. 11.
    T. S. Sorensen, Dienylic and Polyeneylic Cations, in: “Carbonium lons,”G. A. Olah and P. v. R. Schleyer, eds., Vol 2, Wiley-lnterscience, New York (1970).Google Scholar
  12. 12.
    T. S. Sorensen, J. Am. Chem. Soc., 87: 5075 (1965).CrossRefGoogle Scholar
  13. 13.
    B. Francois, C. Mathis, R. Nuffer, and A. Rudatikira, Mol. Cryst. Liq. Cryst., 117:113 (1985)CrossRefGoogle Scholar
  14. 14.
    R. L. Elsenbaumer, G. G. Miller, and J. E. Toth, U. S. Patent 4 526 708, July 2, 1985.Google Scholar
  15. 15.
    L.M. Tolbert, J. A. Schonmaker, and F. J Holler, Synth. Metals, 15:195 (1986).CrossRefGoogle Scholar
  16. 16.
    B. Gordon III and L.F. Hancock, Polymer, 28:585 (1987).Google Scholar
  17. 17.
    A. Pross Acc. Chem. Res CrossRefGoogle Scholar
  18. 18.
    M. A. Druy, Synth. Metals, 15:243 (1986>.CrossRefGoogle Scholar
  19. 19.
    R. L. Esenbaumer, P. Dellanoy, G. G. Miller, C. E. Forbes, N. S. Murthy, H. Eckhardt, and R. H. Baugman, Synth. Metals, 11:251 (1985>.CrossRefGoogle Scholar
  20. 20.
    Ref. 3, Ch 8.Google Scholar
  21. 21.
    G. F. Dandreaux, M. E. Galvin, and G. E. Wnek, Org. Coat. Appl. Polym. Sci., 48:541 (1983).Google Scholar
  22. 22.
    M. E. Galvin, G. F. Dandreaux, and G. E. Wnek, in: “Polymers in Electronics,” T. Davidson, ed., pp. 507–514, ACS, Washington, D.C. (1984).Google Scholar
  23. 23.
    I. Kminek and J. Trekoval, Makromol. Chem. Rapid Commun., 5:53 (1984).CrossRefGoogle Scholar
  24. 24.
    M. Maxfield, J. F. Wolf, G. G. Miller, J. E. Frommer, and L. W. Shacklette, J. Electrochem. Soc., 133: 117 (1986).CrossRefGoogle Scholar
  25. 25.
    D. H. Whitney and G. E. Wnek, Macromolecules, 21: 266 (1988).CrossRefGoogle Scholar
  26. 26.
    J. F. Garst, E. D. Roberts, and J. A. Pacifici, J. Am. Chem. Soc., 99:3528 (1977).CrossRefGoogle Scholar
  27. 27.
    D. H. Whitney and G. E. Wnek, Macromolecules, 21:266 (1988).CrossRefGoogle Scholar
  28. 28.
    M. C. R. Synoms, J. Chem. Res., Synop., 360 (1978).Google Scholar
  29. 29.
    D. H. Whitney, Ph. D. Thesis, Dept. of Materials Science and Engineering, MIT (1987)Google Scholar
  30. 30.
    S. I. Yaniger, M. J. Kletter, and A. G. MacDiarmid, Polym. Prepr., 25(2):264 (1984).Google Scholar
  31. 31.
    J. C. W. Chien, G. E. Wnek, F. E. Karasz, and J. A. Hirsch, Macromolecules, 14:479 (1981).CrossRefGoogle Scholar
  32. 32.
    S. K. Tripathy, D. Kitchen, and M. A. Druy, Macromolecules. 16: 190 (1983).CrossRefGoogle Scholar
  33. 33.
    K. Soga, S. Kawakami, H. Shirakawa, and S. Ikeda, Makromol Chem. Rapid. Commun., 1:643 (1980).CrossRefGoogle Scholar
  34. 34.
    X. Q. Yang, D. B. Tanner, G. Arbuckle, A. G. MacDiarmid, and A. J. Epstein, Synth. Metals, 17:277 (1987).CrossRefGoogle Scholar
  35. 35.
    A. J. Dias and T. J. McCarthy, Macromolecules, 18:869 (1985).CrossRefGoogle Scholar
  36. 36.
    S. B. Clough, S. K. Tripathy, X. F. Sun, B. Orchard, and G. E. Wnek, submitted.Google Scholar
  37. 37.
    D. H. Whitney and G. E. Wnek, Mol. Cryst. Liq. Cryst., 121:313 (1985).CrossRefGoogle Scholar
  38. 38.
    R. Willstätter and S. Dorogi, Chem. Ber., 42:2143 (1910).Google Scholar
  39. 39.
    R. Willstätter and S. Dorogi, Chem. Ber., 42: 2143 (1909).Google Scholar
  40. 40.
    A. G. Green and A. E. Woodhead, J. Chem. Soc., 97: 2388 (1910); ibid., 101: 1117 (1912).Google Scholar
  41. 41.
    F.-L. Lu, F. Wudl, M. Nowak, and A. J. Heeger, J. Am. Chem. Soc., 108: 8311 (1986).CrossRefGoogle Scholar
  42. 42.
    G. E. Wnek. Synth. Metals. 15: 213 (1986).CrossRefGoogle Scholar
  43. 43.
    P. M. McManus, S. C. Yang, and R. J. Cushman, J. Chem. Soc. Chem. Commun., 156 (1985).Google Scholar
  44. 44.
    V. V. Kopylov, A. N. Pravednikov, V. M. Vozzhennikov, and V. K. Bel’skii, Russ. J. Phys. Chem., 52:305 (1978).Google Scholar
  45. 45.
    F. Wudl, R. O. Angus, Jr., F. L. Lu, P. M. Allemand, D. J. Vachon, M. Nowak, Z. X. Liu, and A. J. Heeger, J. Am. Chem. Soc., 109:3677 (1987).Google Scholar
  46. 46.
    E. W. Paul, A. J. Ricco, and M. S. Wrighton, J. Phys. Chem., 89:1441 (1985>.CrossRefGoogle Scholar
  47. 47.
    W. -S. Huang, B. D. Humphrey, and A. G. MacDiramid, J. Chem. Soc., Faraday Trans. 2,82:2385 (1986).CrossRefGoogle Scholar
  48. 48.
    P. M. McManus, R. J. Cushman, and S. C. Yang, J. Phys. Chem, 91:744 (1987).CrossRefGoogle Scholar
  49. 49.
    T. Kobayashi, H. Yoneyama, and H. Tamura, J. Electroanal. Chem., 177:281 (1984).CrossRefGoogle Scholar
  50. 50.
    W. W. Focke, G. E. Wnek, and Y. Wei, J. Phys. Chem., 91:5813 (1987)CrossRefGoogle Scholar
  51. 51.
    W. W. Focke, Ph.D. Thesis, Department of Materials Science and Engineering, MIT (1987).Google Scholar
  52. 52.
    Y. Wei, W. W. Focke, G. E. Wnek, A. Ray, and A. G. MacDiarmid, submitted.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Gary E. Wnekr
    • 1
  1. 1.Department of ChemistryRensselaer Polytechnc InstituteTroyUSA

Personalised recommendations