Molecular and Physiological Properties of Plasma Membranes: The Role of Ion Channels

  • M. Cereijido
  • M. S. Balda
  • A. Ponce
  • J. J. Bolivar


At the beginning of this century, once biologists convinced themselves that cells must be surrounded by a lipidic membrane, it became necessary to assume that this membrane has mechanisms to translocate ions and molecules which are not soluble in lipids. Among the first mechanisms proposed were water filled pores (see Cereijido and Rotunno, 1970). Years later, research with tracer fluxes and impaling (“classical”) microelectrodes supported the concept that the cell membrane is perforated with a variety of water channels that are permeable to specific ionic species, may be opened and closed by gates which are sometimes sensitive to the electrical potential differences between the two sides of the membrane, and that may be influenced by signal molecules bound to nearby receptors.


Cystic Fibrosis Chloride Channel Myotonic Muscular Dystrophy Lens Epithelial Cell Planar Lipid Bilayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albuquerque, E.X., Deshpande, S.S., Aracava, Y., Alkondon, M. and Daly, J.W. 1986. A possible involvement of cyclic AMP in the expression of desensitization of the nicotinic acetylcnoline receptor: a study with forskolin and its analogs. FEBS Letters. 199: 113.PubMedGoogle Scholar
  2. Ashcroft, F.M. 1988. Adenosine 5’-triphosphate-sensitive potassium channels. Ann.Rev.Neurosci. 11: 97.PubMedGoogle Scholar
  3. Ashcroft, F.M., Harrison, D.E. and Ashcroft, S.J.H. 1984. Glucose induces closure of single potassium channels in isolated rat pancreatic ß-cell. Nature 312: 446.PubMedGoogle Scholar
  4. Bacaner, M.B., Clay, J.R., Shrier, A. and Brochu, R.M. 1986. Potassium channel blockade: A mechanism for supressing ventricular fibrillation. Proc.Natl.Acad.Sci.USA. 83: 2223.PubMedGoogle Scholar
  5. Baraban, J.M., Snyder, S.H. and Alger, B.E. 1985. Protein kinase C regulates ionic conductance in hippocampal pyramidal neurons: electrophysiological effects of phorbol esters. Proc.Natl. Acad.Sci.USA. 82: 2538.Google Scholar
  6. Bean, B.P., Cohen, C.J. and Tsien, R.W. 1983. Lidocaine block of cardiac sodium channels. J.Gen.Physiol. 81: 613.PubMedGoogle Scholar
  7. Bolivar, J.J. and Cereijido, M. 1987. Voltage and Ca++-activated K+ channel in cultured epithelial cells ( MDCK ). J.Membr.Biol. 97: 43.Google Scholar
  8. Bray, K.M., Newgreen, D.T., Small, R.C., Southerton, J.S., Taylor, S.G., Weir, S.W. and Weston, A.H. 1987. Evidence that the mechanism of the inhibitory action of pinacidil in rat and guinea-pig smooth muscle differs from that of glyceryl trinitrate. Br. J.Pharmacol. 91: 421.PubMedGoogle Scholar
  9. Caffrey, J.M., Brown, A.M. and Schneider, M.D. 1987. Mitogens and oncogenes can block the induction of specific voltage-gated ion channels. Science 236: 570.PubMedGoogle Scholar
  10. Carmeliet, E. 1985. Electrophysiologic and voltage clamp analysis of the effects of sotalol on isolated cardiac muscle and purkinje fibers. J.Pharmacol.Exp.Ther. 232: 817.PubMedGoogle Scholar
  11. Catterall, W.A. 1987. Common modes of drug action on Na+ channels: located anesthetics, antiarrhythmics and anticonvulsants. Trends Pharmacol.Sci. 8: 57.Google Scholar
  12. Cavalie, A., Ochi, R., Pelzer, D. and Trautwein, W. 1983. Elementary currents through Ca2+ channels in guinea pig myocytes. Pflugers.Arch. 398: 284.PubMedGoogle Scholar
  13. Cereijido, M. and Rotunno, C.A. 1970. Introduction to the study of biological membranes. Gordon and Breach Science Publishers, LondonGoogle Scholar
  14. Changueux, J.P., Giraudat, J. and Denis, M. 1987. The nicotinic acetylcholine receptor: molecular architecture of a ligand-regulated ion channel. Trends Pharmacol.Sci. 8: 459.Google Scholar
  15. Codina, J., Yanati, A., Grenet, D., Brown, A.M. and Birnbaumer 1987. The a subunit of the GTP binding protein GK opens atrial potassium channel. Science 236: 442.PubMedGoogle Scholar
  16. Colquhoun, D. and Sakmann, B. 1983. Burst of openings in transmitter-activated ion channels. In: Single-Channel Recording. B. Sakmann and E. Neher, editors, pp. 345 - 364. Plenum Press, New York, N.Y.Google Scholar
  17. Cook, D.L., Ikeuchi, M. and Fuyimoto, W.Y. 1984. Lowering of pHi inhibits Ca2+-activated K+ channel in pancreatic p-cell. Nature 311: 269.PubMedGoogle Scholar
  18. Cook,N.S. 1988. The pharmacology of potassium channels and their therapeutic potential. Trends Pharmacol.Sci. 9: 21.PubMedGoogle Scholar
  19. Coronado, R. and Latorre, R. 1983. Phospholipid bilayers made from monolayers on patch-clamp pipettes. Biophys.J. 43: 231.PubMedGoogle Scholar
  20. Cull-Candy, S.G. and Usowicz, M.M. 1987. Patch-clamp recording from single glutamate receptor channels. Trends Pharmacol.Sci. 8: 218.Google Scholar
  21. Curtis, B.M. and Catterall, W.A. 1985. Phosphorilation of the calcium antagonist receptor of voltage sensitive calcium channel by cAMP- dependent protein kinase. Proc.Nat. Acad.Sci.USA. 82: 2528.PubMedGoogle Scholar
  22. Darszon, A., Garcia-Soto, J., Lievano, A., Sanchez, J.A. and Islas-Trejo, A.D. 1986. Ionic channels in the plasma membrane of Sea Urchin Sperm. In: Ionic channels in cells and model systems. R. Latorre, editor, pp. 291. Plenum Press, New York, N.Y.Google Scholar
  23. De Rimer, S.A., Strong, J.A., Albert, K.A., Greengard, P. and Kaczmarek, L.K. 1985. Enhancement of calcium current in Aplysia neurons by phorbol ester and protein Kinase C. Nature 313: 313.Google Scholar
  24. De Weille, J., Schmid-Antomarch, H., Fosset, M. and Lazdunski, M. 1988. ATP-sensitive K+ channels that are blocked by hypoglycemia inducing sulfonylureas in insulin-secreting cells are activated by galanin, a hyperglycemia-inducing hormone. Proc.Natl.Acad. Sci.USA. 85:1312,PubMedGoogle Scholar
  25. Defendis, F.V. 1987. Interaction of Ca++ antagonists at 5HT2 and H2 receptors and GABA uptake sites. Trends Pharmacol.Sci. 8: 200.Google Scholar
  26. Fenwick, E.M., Marty, A. and Neher, E. 1982. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J.Physiol.(London). 331: 577.Google Scholar
  27. Field, M., Fromm, D., Al-Awqati, Q. and Greenough III, W.B. 1972. Effect of cholera enterotoxin on ion transport across isolated ileon mucosa. J.Clin.Invest. 51: 796.PubMedGoogle Scholar
  28. Frizzel, R.A., Rechkemmer, G. and Shoemaker, R.L. 1986. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science 233: 558.Google Scholar
  29. Furukawa, K., Itoh, T., Kajiwara, M., Kitamura, K., Suzuki, H., Ito, Y. and Kuriyama, H. 1981. Vasodilating actions of 2-Nicotiamidoethyl nitrate on porcine and guinea-pig coronary arteries. J.Pharmacol.Exp.Ther. 218: 248.PubMedGoogle Scholar
  30. Garcia, A.M. 1986. Methodologies to study channel-mediated ion fluxes in membrane vesicles. In: Ionic channels in cell and model systems. R. Latorre, editor, pp. 127. Plenum Press., New York, N.Y.Google Scholar
  31. Godfraind, T., Morel, N. and Wibo, M. 1988. Tissue specificity of dihydrophyridine-type calcium antagonists in human isolated tissues. Trends Pharmacol. Sci. 9: 37.PubMedGoogle Scholar
  32. Gold, G.H. and Nakamura, T. 1987. Cyclic neucleotide-gated conductance: a new class of ion channels mediated visual and olfactory transduction. Trends Pharmacol.Sci. 8: 312.Google Scholar
  33. Grassi, F., Monaco, L. and Eusebi, F. 1987. Acetylcholine receptors channel properties in rat myotubes exposed to forskolin. Bioch.Biophys.Res.Comm. 147: 1000.Google Scholar
  34. Gray, P.T.A., Bevan, S. and Ritchie, J.M. 1984. High conductance anion- selective channels in rat cultured Schwann Cells. Proc.R. Soc.Lond. B 2 21:395.Google Scholar
  35. Guharay, F. and Sachs, F. 1984. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J.Physiol.(London) 352: 658.Google Scholar
  36. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F.J. 1981. Improved patch clamp technique for high-resolution current recording from cell-free membrane patches. Pflftgers Arch. 391: 85.Google Scholar
  37. Hamilton, T.C., Weir, S.W. and Weston, A.H. 1986. Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein. Br.J.Pharmacol. 88: 103.PubMedGoogle Scholar
  38. Hartshorne, R.P., Keller, B.U., Talvenheimo, J.A., Catterall, W.A. and Montal, M. 1985. Functional reconstitution of the purified brain sodium channel in planar lipid bilayers. Proc.Natl.Acad.Sci.USA. 82: 240.PubMedGoogle Scholar
  39. Henquin, J.C. and Meissner, H.P. 1982. Opposite effects of tolbutamide and diazoxide on 86Rb+ fluxes and membrane potential in pancreatic p-cells. Biochem.Pharmacol. 31: 1407.PubMedGoogle Scholar
  40. Henquin, J.C. and Meissner, H.P. 1984. Significance of ionic fluxes in membrane potential for stimulus-secretion coupling in pancreatic ß-cells. Experentia. 40: 1043.Google Scholar
  41. Hidalgo, C. 1986. Isolation of muscle membranes containing functional ionic channels. In: Ionic channels in cells and model systems. R. Latorre, editor, pp. 101. Plenum Press, New York, N.Y.Google Scholar
  42. Holzman, S. 1983. Cyclic GMP as possible mediator of the coronary arterial relaxation by nicorandil(SG-75).J.Cardiovasc.Pharmacol. 5: 364.Google Scholar
  43. Hodenghem, L.M. and Katzung, B.G. 1984. Antiarrhythmic agents: The modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Ann.Rev.Pharmacol.Toxicol. 24: 387.Google Scholar
  44. Horn, R. and Patlak, J.B. 1980. Single channel currents from excised patches of muscle membrane. Proc.Natl.Acad.Sci.USA. 77: 6930.PubMedGoogle Scholar
  45. Hudson, R.L. and Schultz, S.G. 1988. Sodium-coupled glycine uptake by Ehrlich ascites tumor cells results in an increase in cell volume and plasma membrane channel activity. Proc.Natl.Acad.Sci.USA. 85: 279.PubMedGoogle Scholar
  46. Hunter, M., Lopes, A.G., Boulpaep, E. and Giebisch, G. 1986. Regulation of single potassium channel from apical membrane of rabbit collecting tubule.Am.J.Physiol. (Renal Fluid Electrolyte Physiol (20) 251: F725.Google Scholar
  47. Jones, S.U.P., Cunha-Melo, J.R., Beaven, M.A. and Baker, J.L. 1987. Inositol-1,4,5,-triphosphate mimics antigen activation of membrane currents in a mast cell line. Fed.Proc. 46 (3): A397Google Scholar
  48. Kakei, M., Kelly, R.P., Aschroft, S.J.H. and Ashcroft, F.M. 1986. The ATP-sensitivity of K+ channels in rat pancreatic ß-cells is modulated by ADP. FEBS Letters 208: 63.PubMedGoogle Scholar
  49. Karashima, T., Itoh, T. and Kurimaya, H. 1982. Effects of 2-Nicotinamidoethyl nitrate on smooth muscle cells of the guinea-pig mesenteric and portal veins. J.Pharmacol.Exp.Ther. 221: 472.PubMedGoogle Scholar
  50. Kim, Y.I. and Neher, E. 1988. IgG from patients with Lambert-Eaton syndrome blocks voltage-dependent calcium channels. Science 239: 405.PubMedGoogle Scholar
  51. Kirk, K.L. and Dawson, D.C. 1983. Evidence for single-file ion flow. J.Gen.Physiol. 82: 297.PubMedGoogle Scholar
  52. Koppi, S., Eberhardt, C., Haller, R. and Konig, P. 1987. Calcium-channels-blocking agent in the treatment of acute alcohol withdrawal-Carovine versus meprobamate in a randomized double-blind study. Neuropsychobiology 17: 49.PubMedGoogle Scholar
  53. Kuno, M. and Gardner, P. 1987. Ion channels activated by inositol 1,4,5,-triphosphate in plasma membrane of human T-lymphocytes. Nature 326: 301.PubMedGoogle Scholar
  54. Kurachi, Y., Nakajima, T. and Sugimoto, T. 1986. On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells; involvement of GTP-binding proteins. Pflttgers.Arch. 407: 264.Google Scholar
  55. Landry, D.W., Reitman, M., Cragoe, E.J.(Jr) and Al-Awqati, Q. 1987. Epithelial chloride channel: Development of inhibitory ligands. J.Gen.Physiol. 90: 779.PubMedGoogle Scholar
  56. Latorre, R. and Miller, C. 1983. Conduction and selectivity in potassium channels. J.Membr.Biol. 71: 11.PubMedGoogle Scholar
  57. Latorre, R., Vergara, C. and Hidalgo, C. 1982. Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle. Proc.Natl.Acad.Sci.USA 77: 7484.Google Scholar
  58. Levitan, I.B. 1985. Phosphorylation of ion channels. J.Membr.Biol. 87: 177.PubMedGoogle Scholar
  59. Levitan, I.B. 1988. Modulation of ion channels in neurons and other cells. Ann.Rev.Neurosci. 11: 119.PubMedGoogle Scholar
  60. Logothetis, D.E., Kurachi, Y., Galper, J., Neer, E.J. and Clapham, D.E. 1987. The beta-gamma subunit of GTP-binding proteins activated the muscarinic K+ channel in heart. Nature 325: 321.PubMedGoogle Scholar
  61. Lotshaw, D.P., Levitan, E.S. and Levitan, I.B. 1986. Fine tuning of neuronal electrical activity: Modulation of several ion channels by intracellular messengers in a single identified nerve cells. J.EXP,BlOl. 124: 307.Google Scholar
  62. Madison, D.V., Malenka, R.C. and. Nicoll, R.A. 1986. Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Nature 321: 695.PubMedGoogle Scholar
  63. Malenka, R.C., Madison, D.V., Andrade, R. and Nicoll, R.A. 1986. Phorbol esters mimic some cholinergic actions in hippocampal pyramidal neurons. J.Neurosci. 6: 475.PubMedGoogle Scholar
  64. Mandel, a., Cooperman, S.S., Mane, R.A., Goodman, R.H. and Brelim, P. 1988. Selective induction of brain type II Na channels by nerve growth factors. Proc.Natl.Acad.Sci.USA. 85: 924.PubMedGoogle Scholar
  65. Marty, A. 1981. Ca2+-dependent K+ channels with large unitary conductance in chromaffin cell membranes. Nature 291: 497.PubMedGoogle Scholar
  66. Marty, A. and Neher, E. 1983. Tight-seal whole-cell recording. In: Single-channel recording. B. Sakman and E. Neher, editors, pp. 107- 122. Plenum Press, New York, N.Y.Google Scholar
  67. Maruyama, Y. and Petersen, O.H. 1982. Cholecystokinin activation of single-channel currents is mediated by internal messenger in pancreatic acinar cells. Nature 300: 61.PubMedGoogle Scholar
  68. Matsuki, N., Quandt, F.N., Ten Eik, R.E. and Yeh, J.Z. 1984. Characterization of the block of sodium channels by phenytoin in mouse neuroblastoma cells. J.Pharmacol.Exp.Ther. 228: 523.PubMedGoogle Scholar
  69. Middleton, P., Jaramillo, F. and Shuetze, S.M. 1986. Forskolin increase the rate of acetylcholine receptor desensitization at rat soleus endplates. Proc.Natl.Acad.Sci.USA. 83: 4967.PubMedGoogle Scholar
  70. Miller, C. 1986. Ion channel reconstitution: why bother?. In: Ionic channels in cell and model systems. R. Latorre, editor, pp. 257. Plenum, Press., New York, N.Y.Google Scholar
  71. Miller, R.J. 1988. G proteins flex their muscles. Trends In Neuroscience 11 (1): 3.Google Scholar
  72. Misler, S., Falke, L.C., Gillirs, K. and McDaniel, M.L. 1986. A metabolic-regulated potassium channel in rat pancreatic p- cells. Proc.Natl.Acad.Sci.USA 83: 7119.PubMedGoogle Scholar
  73. Montal, M., Suarez-Isla, B., Wan, K. and Lindstrom, J. 1983. Single-channel recordings from purifies acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipettes. Biochemistry 22: 2319.PubMedGoogle Scholar
  74. Neher, E. and Sakmann, B. 1976. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260: 799.PubMedGoogle Scholar
  75. Neher, E. and Steinbach, J.H. 1978. Local anesthetics transiently block currents through single acetylcholine-receptor channels. J.Physiol.(London) 277: 153.Google Scholar
  76. Nilus, B., Hess, P., Lansman, J.B. and Tsien, R.W. 1985. A novel type of cardiac calcium channel in ventricular cells. Nature 316: 443.Google Scholar
  77. Noma, A. 1983. ATP-regulated K+ channels in cardiac muscle. Nature 305: 147.PubMedGoogle Scholar
  78. Palmer, L.G. 1986. Patch-clamp technique in renal physiology. Am.J.Physiol.(Renal Fluid Electrolyte Physiol. 19) 250: F379.Google Scholar
  79. Palmer, L.G. and Frindt, G. 1986. Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc.Natl.Acad.Sci.USA. 83: 2767.PubMedGoogle Scholar
  80. Papazian, D.M., Schwarz, T.L., Tempel, B.L., Timpe, L.C. and Jan, L.Y. 1988. Ion channels in drosophila. Ann.Rev.Physiol. 50: 379.Google Scholar
  81. Pedersen, P.S., Brandt, N.J. and Larsen, E.H. 1986. Qualitatively abnormal beta-adrenergic response in cystic fibrosis sweat duct cell culture. IRCS Med.Sci. 14: 701.Google Scholar
  82. Preuss, K.C., Gross, G.J., Brooks, H.L. and Warltiet, D.C. 1985. Slow channel calcium activators, a new groups of pharmacological agents. Life Science. 37: 1271.Google Scholar
  83. Quinton, P.M. 1983. Chloride impermeability in cystic fibrosis. Nature 301: 421.PubMedGoogle Scholar
  84. Racker, E. 1975. Reconstitution of membrane pumps. In: Proceedings of 10th FEBS Meeting; Biological Membranes. J. Montreuil and P. Mandel, editors, pp. 25.., North Holland Amsterdam.Google Scholar
  85. Rae, J.L. and Levis, R.A. 1984. Patch voltage clamp of lens epithelial cells: Theory and practice. Hoi.Physiol. 6: 115.Google Scholar
  86. Raeburn, D. and Gonzales, R.A. 1988. CNS disorders and calcium antagonists. Trends Pharmacol.Sci. 9: 117.PubMedGoogle Scholar
  87. Rane, S.G. and Dunlap, K. 1986. Kinase C activator 1,2- oleoylacetylglycerol attenuates voltage dependent calcium current in sensory neurons. Proc.Natl.Acad.Sci. 83: 184.PubMedGoogle Scholar
  88. Renaud, J.F., Desneuelle, C., Schmid-Antomarchi, H., Hugwes, M., Serratrice, G. and Ladunski, M. 1986. Expression of apamin receptor in muscles of patients with myotonic muscular dystrophy. Nature 319: 678.PubMedGoogle Scholar
  89. Richards, N.W. and Dawson, D.C. 1986. Single potassium channels blocked by lidocaine and quinidine in isolated turtle colon epithelial cells. Am.J.Physiol. (Cell Physiol 20 ) 251: C85.Google Scholar
  90. Romey, G., Hugues, M., Schmid-Antomarchi, H. and Lazdunski, M. 1984. Apamin: A specific toxin to study a class of Ca2+ -dependent K+ channels. J.Physiol.(Paris) 79: 259.Google Scholar
  91. Salkoff, L.B. and Tanouye, M.A. 1986. Genetics of ion channels. Physiol.Rev. 66: 301.PubMedGoogle Scholar
  92. Schneider, G.T., Cook, D.I., Gage, P.W. and Young, J.A. 1985. Voltage sensitive, high-conductance chloride channels in the luminal membrane of cultured pulmonary alveolar (type II) cells. Pfluger.Arch. 404: 354.Google Scholar
  93. Scholtysik, G. 1987. Evidence for inhibition by ICS 205-930 and stimulation by 34915 of K+ conductance in cardiac muscles. Naunym-Schmeed.Arch.Pharmacol. 335: 692.Google Scholar
  94. Schoumacher, R.A., Shoemaker, R.L., Halm, D.R., Tallant, E.A., Wallace, R.W. and Frizzell, R.A. 1987. Phosphorilaton fails to activate chloride channels from cystic fibrosis airway cells. Nature 330: 752.PubMedGoogle Scholar
  95. Schramm, M., Thomas, G., Towart, R. and Franckowiak, G. 1983. Novel diphydropyridines with positive inotropic action through activation of Ca++ channels. Nature 303: 535.PubMedGoogle Scholar
  96. Shuster, M., Camardo, J., Siegelbaum, S. and Kandel, E.R. 1985. Cyclic AMP-dependent protein kinase closes the serotonin-sensitive K+ channels of Aplisia sensory neurones in cell-free membrane patches. Nature 313: 392.PubMedGoogle Scholar
  97. Siegelbaum, S.A., Camardo, J.S. and Kandel, E.R. 1982. Serotonin and cAMP close single K channels in Aplysia sensory neurons.Nature (London) 299: 415.Google Scholar
  98. Strichartz, G. 1976. Molecular mechanism of nerve block by local anesthetics. Anesthesiology 45: 421.PubMedGoogle Scholar
  99. Suarez-Isla, B.A., Wan, K., Lindstrom, J. and Montal, M. 1983. Single- channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipettes. Biochemistry 22: 2319.PubMedGoogle Scholar
  100. Takenaka, T. and Maeno, H. 1982. A vasoconstrictive coumpound 1,4.- dihydropyridine derivative. Jpn.J.Pharmacol. 32: 139Google Scholar
  101. Tank, D.W., Miller, C.M. and Webb, W.W. 1982. Isolated-patch recording from liposomes containing functionally reconstituted chloride channel from Torpedo Electroplax. Proc.Natl.Acad.Sci.USA 79: 7749.PubMedGoogle Scholar
  102. Triggle, D.J. and Janis, R.A. 1987. Calcium channel ligans. Ann.Rev.Pharmacol.Toxicol. 27: 347.Google Scholar
  103. Turbe, G., Rorsman, P. and Ohno-Shosakv, T. 1986. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic ß-cells. Pflugers.Arch. 407: 493.Google Scholar
  104. Weiss, J.N. and Lamp, S.T. 1987. Glycolysis preferentially inhibits ATP- sensitive K+ channels in isolated guinea pig cardiac myocytes. Science 238: 67.PubMedGoogle Scholar
  105. Welsh, M.J. 1986. An apical-membrane chloride channel in human tracheal epithelial. Science 232: 1648.PubMedGoogle Scholar
  106. Welsh, M.J. and Liedtke, C.M. 1986. Chloride and potassium channels in cystic fibrosis airway epithelia. Nature 322: 467.PubMedGoogle Scholar
  107. Widdicombe, J.H. 1986. Cystic fibrosis and ß-adrenergic response of airway epithelial cell cultures. Am.J.Physiol, 251: R818.PubMedGoogle Scholar
  108. Willow, M., Qonoi, T. and Catterall, W.A. 1985. Voltage clamp analysis of inhibitory actions of diphenylhydantoin and carbamazepine on voltage-sensitive sodium channels in neuroblastoma cells. Hoi.Pharmacol. 27: 549.Google Scholar
  109. Wu, C.H. and Narahashi, T. 1988. Mechanism of action of novel marine neuro toxins on ion channels. Ann.Rev.Pharmacol.Toxicol. 28: 141.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. Cereijido
    • 1
  • M. S. Balda
    • 1
  • A. Ponce
    • 1
  • J. J. Bolivar
    • 1
  1. 1.Center of Research and Advanced StudiesMéxico 14, D.F.México

Personalised recommendations