Skip to main content

Overproduction of Proteins by Recombinant DNA: Human Insulin

  • Chapter
Cell Function and Disease

Abstract

An important goal of recombinant DNA research is to develop methods for the overproduction of useful gene products. Cloning a gene of interest for its expression in a particular host system is not an easy task, for the manipulations require extensive knowledge of the regulatory mechanisms of gene expression, basic understanding of the vector-host relationships, skills in the recombinant DNA techniques, adequate technical support for cell growth, and finally, suitable purification procedures for the protein products of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balbas, P., Soberon, X., Merino, E., Zurita, M., Lomeli, H., Valle, F., Flores, N. and Bolivar, F.,1986, Plasmid vector pBR322 and its special-purpose derivatives- a review, Gene, 50: 3–40.

    Article  PubMed  CAS  Google Scholar 

  • Balbas, P., Soberon, X., Merino, E., Zurita, M., Lomeli, H., Valle, F., Flores, N. and Bolivar, F.,1986, Plasmid vector pBR322 and its special-purpose derivatives- a review, Gene, 50: 3–40.

    Article  PubMed  CAS  Google Scholar 

  • Bolivar, F. Rodriguez, R.L., Greene, P.J., Betlach, M.C., Heyneker, H.L., Boyer, H.W., Crosa, J.H. and Falkow, S., 1977, Construction and characterization of new cloning vehicles. II. A multipurpose cloning system, Gene, 2: 95-113.

    Article  PubMed  CAS  Google Scholar 

  • Bonnereja, J., Oh, S., Hoare, M. and Dunnhill, P., 1986, Protein purification: the right step at the right time, Bio/technology, 4: 954 - 957.

    Article  Google Scholar 

  • Chance, R.E., Hoffmann, J.A., Kroeff, E.P., Johnson, M.G., Schirmer, E.W., Bromer, W.W., Ross, M.J. and Wetzel, R., 1981, The production of human insulin using recombinant DNA technology and a new chain combination procedure, Proc. of the Seventh American Peptide Symposium, 7: 721 - 728.

    Google Scholar 

  • Datar, R., 1986, Economics of primary separation steps in relation to fermentation and genetic engineering, Process Biochem., Feb: 19–26

    Google Scholar 

  • Dennis, K., Srienc, F. and Bailey, J.E., 1985, Ampicillin effects on five recombinant Escherichia coli strains: implications for selection pressure design, Biotechnol. Bioeng., 27: 1490-1494.

    Article  PubMed  CAS  Google Scholar 

  • Ensley, B.D., 1985, Stability of recombinant plasmids in industrial microorganisms, CRC Biotechnol., 4: 263 - 277.

    Article  Google Scholar 

  • Flores, N., de Anda R., Guereca, L., Cruz, N., Antonio, S., Balbas, P., Bolivar, F. and Valle, F., 1986, A new expression vector for the production of fused proteins in Escherichia coli, Appl. Microbiol. Biotechnol., 25: 267-271.

    Article  CAS  Google Scholar 

  • Gentz, R., Langer, A., Chang, A.C., Cohen, S.N. and Bujard, H., 1981, Cloning and analysis of strong promoters is made possible by the downstream placement of a RNA termination signal, Proc. Natl. Acad. Sei. USA, 78: 4936–4940.

    Article  CAS  Google Scholar 

  • Goeddel, D.V., Kleid, D.G., Bolivar, F., Heyneker, H.L., Yansura, D.G., Crea, R., Hirose, T., Krazewski, A., Itakura, K. and Riggs, A.D., 1979, Expression in Escherichia coli of chemically synthesized genes for human insulin, Proc. Natl. Acad. Sei. USA, 76: 106-110.

    Article  CAS  Google Scholar 

  • Gottesman, S., 1984, Bacterial regulation: global regulatory networks, Ann. Rev. Genet., 18: 415-441.

    Article  PubMed  CAS  Google Scholar 

  • Gross, E., 1967, The cyanogen bromide reaction, Meth. Enzymol., 11: 238-255.

    Article  CAS  Google Scholar 

  • Harban, P.A., Berger, M., Gjinovci, A. and Renold, A.E., 1981, Biological activity and pharmacokynetics of biosynthetic human insulin in the rat, Diabetes Care, 4: 238 - 243.

    Article  Google Scholar 

  • Harris, T.J.R., 1983, Expression of eukaryotic genes in Escherichia coli, in, Genetic engineering, R. Williamson, ed., Academic Press, New York, NY, pp. 127 - 183.

    Google Scholar 

  • Inouye, I., 1983, Experimental manipulation of gene expression, Academic Press, New York, NY.

    Google Scholar 

  • Itakura, K., Hirose, T. Crea, R., Riggs, A.D., Heyneker, H.L., Bolivar, F. and Boyer, H.W., 1977, Expression in Escherichia coli of a chemically synthesized gene for the human hormone somatostatin, Science, 198: 1056 - 1063.

    Article  PubMed  CAS  Google Scholar 

  • Katsoyannis, P.G., Trakatellis, A.C., Johnson, S., Zalut, C. and Schwartz, G., 1967, Studies on the synthesis of insulin from natural and synthetic A and B chains, Biochemistry, 6: 2642 - 2655.

    Article  PubMed  CAS  Google Scholar 

  • Kaytes, P.S., Theriault, N.Y., Poorman, R.A., Murakami, K. and Tomich, C.C., 1986, High-level expression of human rennin in Escherichia coli, J. Biotechnol., 4: 205 - 218.

    Article  CAS  Google Scholar 

  • Kim, S.H. and Ryu, D.D.Y., 1984, Instability kinatics of trp operon plasmid ColEl-trp in recombinant Escherichia coli MV12(pVH5) and MV12trpR(pVH5), Biotechnol. Bioeng., 26: 497-502.

    Article  PubMed  CAS  Google Scholar 

  • Klotsky, R.A. and Schwartz, I., 1987, Measturement of cat expression from growth-rate-regulated promoters employing B-lactamase activity as an indicator of plasmid copy number, Gene, 55: 141 - 146.

    Article  PubMed  CAS  Google Scholar 

  • Ladron de Guevara, O., Estrada, G., Antonio, S., Alvarado, X., Guereca, L., Zamudio, F. and Bolivar, F., 1985, Identification and isolation of human insulin A and B chains by high-performance liquid chromatography, J. Chromatogr., 349: 91–98.

    Article  PubMed  CAS  Google Scholar 

  • Luckow, V.A. and Summers M.D., 1988, Trends in the development of Baculovirus expression vectors, Bio/technology, 6: 47 - 55.

    Article  CAS  Google Scholar 

  • Meyer, H.P., Kappeli, 0. and Fiechter, A., 1985, Growth control in microbial cultures, Ann. Rev. Microbiol., 39: 299–319

    Article  CAS  Google Scholar 

  • Morgan, C,R. and Lazarow, A., 1962, Immunoassay of insulin using a two- antibody system, Proc. Soc. Exp. Biol. Med., 3: 29–32.

    Google Scholar 

  • Naveh, D., 1986, Scale-up of fermentation for recombinant DNA products, Food Technol., 11: 102 - 109.

    Google Scholar 

  • Nichols, B.P. and Yanofsky, C., 1983, Plasmids containing the trp promoters of Escherichia coli and Serratia marcescens and their use in expressing cloned genes, Meth. Enzymol., 101: 155–164.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, G., Belasco, J.G., Cohen, S.N. and von Gabain, A., 1984, Growth- rate dependent regulation of mRNA stability in Escherichia coli, Nature, 312: 75 - 76.

    Article  PubMed  CAS  Google Scholar 

  • Pabo, C.O., Sauer, R.T., Sturtevant, J.M. and Ptashne, M., 1979, Lambda repressor contains two domains, Proc. Natl. Acad. Sei. USA, 76: 1608–1611.

    Article  CAS  Google Scholar 

  • Primrose, S.B., 1986, The application of genetically engineered microorganisms in the production of drugs, J. Appl. Bacteriol., 61: 99–116.

    Article  PubMed  CAS  Google Scholar 

  • Randall, S.S., 1964, The small-scale preparation of crystalline insulin, Biochim. Biophys. Acta, 90: 472–476.

    PubMed  CAS  Google Scholar 

  • Reznikoff, W. and Gold, L., 1986, Maximizing gene expression, Butterworths Pub., Stoneham, Mass.

    Google Scholar 

  • Roberts, J.W. and Roberts, C.W., 1975, Proteolytic cleavage of bacteriophage lambda repressor in induction, Proc. Natl. Acad. Sei. USA, 72: 147–151.

    Article  CAS  Google Scholar 

  • Rodriguez, R.L. and Denhardt, D.T., 1987, Vectors: a survey of molecular cloning vectors and their uses, Butterworths Pub., Stoneham, Mass.

    Google Scholar 

  • Romans, R.G., Scott, D.A. and Fisher, A.M., 1940, Preparation of crystalline insulin, Indust. Engin. Chem., 32: 908–910.

    Article  CAS  Google Scholar 

  • Rosteck Jr., P.R. and Hershberger, C.L., 1983, Selective retention of recombinant plasmids coding for human insulin, Gene, 25: 29 - 38.

    Article  PubMed  CAS  Google Scholar 

  • Schlichtkrull, J., 1956, Insulin crystals, Acta Chemica Scandinavia, 10: 1455 - 1458.

    Article  CAS  Google Scholar 

  • Schoner, B.E., Belagaje, R.M. and Schoner, R.G., 1986, Translation of a synthetic two-cystron mRNA in Escherichia coli, Proc. Natl. Acad. Sei. USA, 83: 8506–8510.

    Article  CAS  Google Scholar 

  • Schoner, R.G., Ellis, L.F. and Schoner, B.E., 1985, Isolation and purification of protein granules from Escherichia coli from cells overproducing bovine growth hormone, Bio/technology, 3: 151 - 154.

    Article  CAS  Google Scholar 

  • Seo, J. and Bailey, J.E., 1985, Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli, Biotechnol. Bioeng., 27: 1668–1674.

    Article  PubMed  CAS  Google Scholar 

  • Shatzman, A.R. and Rosenberg, M., 1987, Expression, identification and characterization of recombinant gene products in Escherichia coli, Meth. Enzymol., 152: 661–6732E

    Article  PubMed  CAS  Google Scholar 

  • Soberon, X., Covarrubias, L. and Bolivar, F., 1980, Construction and characterization of new cloning vehicles. IV. Deletion derivatives of pBR322 and pBR325, Gene, 9: 287 - 305.

    Article  PubMed  CAS  Google Scholar 

  • Swami, K.H.S. and Goldberg, A.L., 1981, Escherichia coli contains eight soluble proteooytic activities, one being ATP dependent, Nature, 292-652-654.

    Google Scholar 

  • Weinstock, G.M., Rhys, C., Berman, M.L., Hamper, B., Jackson, D., Silhavy, T.J., Weisman, J. and Zweig, M., 1983, Open reading frame expression vectors: a general method for antigen production in Escherichia coli using protein fusions to B-galactosidase, Proc. Natl. Acad. Sei., USA 80: 4432–4436.

    Article  CAS  Google Scholar 

  • Williams, D.C., Van Frank, R.M. Muth, W. and Burnett, J.P., 1982, Cytoplasmic inclusion bodies in Escherichia coli producing biosynthetic human insulin proteins, Science, 215: 687 - 689.

    Article  PubMed  CAS  Google Scholar 

  • Wong, H.C. and Chang, S., 1986, Identification of a positive retroregulator that stabilizes mRNA in bacteria, Proc. Natl. Acad. Sei. USA, 83: 3233–3237.

    Article  CAS  Google Scholar 

  • Zabriskie, D.W. and Acuri, E.J., 1986, Factors influencing productivity of fermentations employing recombinant microorganisms, Enzyme Ferment. Technol. 8: 706–717.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Balbas, P. et al. (1988). Overproduction of Proteins by Recombinant DNA: Human Insulin. In: Cañedo, L.E., Todd, L.E., Packer, L., Jaz, J. (eds) Cell Function and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0813-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0813-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8095-8

  • Online ISBN: 978-1-4613-0813-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics