Skip to main content

Molecular Basis of Contrast in MRI

  • Chapter

Abstract

Water is an essential component as well as the most abundant molecule in all living systems. In magnetic resonance imaging (MRI) water is fundamental to image formation. Furthermore, the physical-chemical properties of cellular and extracellular water provide major contributions to the inherent contrast found in each image. The physical properties of water as a solvent are subject to change when macromolecular structure and/or motion is altered. Thus, precise knowledge of water-macromolecular interactions is required for our understanding of information content in an image obtained by magnetic resonance techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Drost-Hanson and J. S. Clegg (editors), “Cell-Associated Water”, Academic Press, Inc. New York (1979).

    Google Scholar 

  2. F. Franks (editor), “Biophysics of Water”, John Wiley and Sons, Inc. New York (1982).

    Google Scholar 

  3. G. N. Ling, “In Search of a Physical Basis of Life”, Plenum Press, New York (1984).

    Book  Google Scholar 

  4. J. S. Clegg, S. Szwarnowski, V. E. R. McClean, R. J. Sheppard, and E. H. Grant, Interrelationships between Water and Cell Metabolism in Artemia cysts. X. Microwave Dielectric Studies, Biochem. Biophvs. Aeta. 721: 458 (1982).

    Article  CAS  Google Scholar 

  5. P. A. Bottomly, T. H. Foster, R. E. Argersinger, and L. M. Pfeifer, A Review of Normal Tissue Hydrogen NMR Relaxation Times and Relaxation Mechanisms from 1-100 MHz: Dependence on Tissue Type, NMR Frequency, Temperature, Species, Excision, and Age, Med. Phvs. 11: 425 (1984).

    Article  Google Scholar 

  6. P. A. Bottomly, T. H. Foster, R. E. Argersinger, and L. M. Pfeifer, A Review oflH Nuclear Magnetic Resonance Relaxation in Pathology: Are T1 and T2 Diagnostic?, Med. Phvs. 14: 1 (1987).

    Article  Google Scholar 

  7. E. C.Trantham, H. E. Rorschach, J. S. Clegg, C. F. Hazlewood, R. M. Nicklow, and N. Wakabayashi, Diffusive Properties of Water in Artemia as Determined from Quasi-Elastic Neutron Scattering Spectra, Biophvs. J. 45: 927 (1984).

    Article  CAS  Google Scholar 

  8. H. E. Rorschach, D. W. Bearden, C. F. Hazlewood, D. B. Heidorn, and R. M. Nicklow, Quasi-Elastic Scattering Studies of Water Diffusion, Scanning Microscopy 1: 2043 (1987).

    CAS  Google Scholar 

  9. D. D. Stark and W. G. Bradley, “Magnetic Resonance Imaging”, The C.W. Mosley Co. St. Louis, (1988).

    Google Scholar 

  10. N. Bloembergen, E. M. Purcell, and R. V. Pound, Relaxation Effects in Nuclear Magnetic Resonance Absorption, Phvs. Rev. 73: 679 (1948).

    Article  CAS  Google Scholar 

  11. G. D. Fullerton, V. A. Ord, and I. L. Cameron, An Evaluation of the Hydration of Lysozyme by an NMR Titration Method, Biochem. Biophvs. Acta. 869: 230 (1986).

    Article  CAS  Google Scholar 

  12. G. D. Fullerton, in.: “Magnetic Resonance Imaging”, D. D. Stark and W. G. Bradley, editors. The C.W. Mosley Co. St. Louis., 36 (1988).

    Google Scholar 

  13. S. E. Koenig, in: “Water in Polymers”, S.P. Rowland, editor. ACS Symp. Series No. 127: 157 (1980).

    Google Scholar 

  14. J. S. Clegg, Interrelationships between Water and Cell Metabolism in Artemia cysts. XI. Density Measurements, Cell Biophysics 6: 154 (1984).

    Google Scholar 

  15. J. S. Clegg, Properties and Metabolism of the Aqueous Cytoplasm and its Boundaries, Am. J. Physiol. 246:R–136 (1984).

    Google Scholar 

  16. J. S. Clegg, Interrelationships between Water and Cell Metabolism in Artemia cysts. Hydration-Dehydration from Liquid and Vapour Phases, J. Exptl. Biol. 61: 291 (1982).

    Google Scholar 

  17. K. Hallenga and S. E. Koenig, Protein Rotational Relaxation as Studied by Solvent 1H and 2H Magnetic Relaxation, Biochemistry 15: 4255 (1976).

    Article  PubMed  CAS  Google Scholar 

  18. J. M. Escanye, D. Canet, and J. Robert, Frequency Dependence of Water Proton Longitudinal Nuclear Magnetic Relaxation Times in Mouse Muscle at 20°C, Biochem. Biophys. Acta. 721: 305 (1982).

    Article  PubMed  CAS  Google Scholar 

  19. H. E. Rorschach and C. F. Hazlewood, Protein Dynamics and the NMR Relaxation Time Ti of Water in Biological Systems, J. Mag. Res. 70: 79 (1986).

    CAS  Google Scholar 

  20. A. L. Lehninger, “Biochemistry”, second edition, Worth Publishers, Inc., 130 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Egan, T.F., Rorschach, H.E., Hazlewood, C.F. (1988). Molecular Basis of Contrast in MRI. In: Cañedo, L.E., Todd, L.E., Packer, L., Jaz, J. (eds) Cell Function and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0813-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0813-3_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8095-8

  • Online ISBN: 978-1-4613-0813-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics