Constancy and Change in Bacterial Genomes

  • Monica Riley
Part of the Bacteria in Nature book series (BANA, volume 3)


This chapter discusses general properties of the bacterial genome. The attributes that tend to remain the same and the mechanisms for introducing change are contrasted. The two opposing tendencies for constancy and change contribute to a dynamic condition in which genetic variants arise, providing diversity to bacterial populations, but at the same time conservative tendencies are at work maintaining the fitness of the organism and the essential genetic identity of each bacterial species.


Bacterial Genome Insertion Sequence Synonymous Codon Enteric Bacterium Bacterial Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An, G., and Frisen, J. D., 1980, The nucleotide sequence of tufBand Four nearby tRNA structural genes of Escherichia coli, Gene 12: 33 – 39.PubMedGoogle Scholar
  2. Anagnostopoulos, C., 1976, Genetic analysis of Bacillus subtilis strains carrying chromosomal rearrangements, in: Modern Trends in Bacterial Transformation and Transfection( A. Portoles, R. Lopez, and M. Espinosa, eds.), pp. 211 – 230, Elsevier/North-Holland, Amsterdam.Google Scholar
  3. Anderson, E. S., 1968, The ecology of transferable drug resistance in the Enterobacteriae, Annu. Rev. Microbol. 22: 131 – 180.Google Scholar
  4. Anilionis, A., and Riley, M., 1980, Conservation and variation of nucleotide sequences within related bacterial genomes: Escherichia coliI strains, J. Bacteriol. 143: 355 – 365.PubMedGoogle Scholar
  5. Anilionis, A., Ostapchuk, P., and Riley, M., 1980, Identification of a second cryptic lambdoid prophage locus in the E. coliK12 chromosome, MoL Gen. Gent. 180: 479 – 481.Google Scholar
  6. Bachmann, B. J., 1983, Linkage map of Escherichia coliK-12, edition 7, Microbiol. Rev. 47: 180 – 230.PubMedGoogle Scholar
  7. Barsomian, G. D., Robillard, N. J., and Thorne, Curtis B., 1984, Chromosomal mapping of Bacillus thuringiensisby transduction, J. Bacteriol. 157: 746 – 750.PubMedGoogle Scholar
  8. Bautsch, W., Grothnes, E., and Tummler, B., 1988, Genome fingerprinting of Pseudomonas aeruginosaby two-dimensional field inversion gel electrophoresis, FEMS Microbiol. Lett. 52: 255 – 258.Google Scholar
  9. Bencini, P. A., Houghton, J. E., Hoover, T. A., Foltermann, K. F., Wild, J. R., and O’Donovan, G. A., 1983, The DNA sequence of arglfrom Escherichia coliK12, Nucl. Acids Res. 11: 8509 – 8518.PubMedGoogle Scholar
  10. Beringer, J. E., and Hirsch, P. R., 1984, Genetic adaptation to the environment, in: Current Perspectives in Microbial Ecology( M.J. Klug and C. A. Reddy, eds.), pp. 63 – 70, American Society for Microbiology, Washington, D.C.Google Scholar
  11. Berry, J. O., and Atherly, A. G., 1984, Induced plasmid-genome rearrangements in Rhizobium japonicum, J. Bacteriol. 157: 218 – 224.PubMedGoogle Scholar
  12. Bouche, J. P., Galugne, J. P., Louarn, J., and Louarn, L. M., 1982, Physical map of a 470 x 103 base-pair region flanking the terminus of DNA, J. Mol. Biol. 154: 21 – 32.PubMedGoogle Scholar
  13. Brenner, D. J., and Falkow, S., 1971, Molecular relationship among members of the enterobacteriaceae, in: Advances in Genetics, Vol. 16 ( E. W. Caspari, ed.), pp. 35 – 51, Academic, New York.Google Scholar
  14. Brenner, D. J., 1973, Deoxribonucleic acid reassociation in the taxonomy of enteric bacteria, Int. J. Syst. Bacteriol. 23: 298 – 307.Google Scholar
  15. Brewer, B. J., 1988, When polymerase collide: Replication and the transcriptional organization of the E. colichromosome, Cell 53: 679 – 686.PubMedGoogle Scholar
  16. Brody, H., Greener, A., and Hill, C. W., 1985, Excision and reintegration of the Escherichia coliK-12 chromosomal element el4, J. Bacteriol. 161: 1112 – 1117.PubMedGoogle Scholar
  17. Buvinger, W. E., Lampel, K. A., Bojanowski, R. J., and Riley, M., 1984, Location and analysis of nucleotide sequences at one end of a putative lactransposon in the Escherichia colichromosome, J. Bacteriol. 159: 618 – 623.PubMedGoogle Scholar
  18. Buvinger, W. E., and Riley, M., 1985a, Nucleotide sequence of Klebsiella pneumoniae lac genes, J. Bacteriol. 163:850–857.Google Scholar
  19. Buvinger, W. E., and Riley, M., 1985b, Regulatory region of the divergent Klebsiella pneumoniae lac operon, J. Bacteriol. 163:858–862.Google Scholar
  20. Cairns, J., Overbaugh, J., and Miller, S., 1988, The origin of mutants, Nature (Lond.) 335: 142 – 145.Google Scholar
  21. Calos, M. P., and Miller, J., 1980, Transposable elements, Cell 20: 579 – 595.PubMedGoogle Scholar
  22. Casse, F., Pascal, M. C., and Chippaux, M., 1973, Comparison between the chromosomal maps of E. coliand S. typhimurium. Length of the inverted segment in the trpregion, Mol. Gen. Genet. 124: 253 – 257.PubMedGoogle Scholar
  23. Caugant, D. A., Levin, B. R., and Selander, R. K., 1981, Genetic diversity and temporal variation in the£. colipopulation of a human host, Genetics 98: 467 – 490.PubMedGoogle Scholar
  24. Chumley, F. G., and Roth, J. R., 1980, Rearrangement of the bacterial chromosome using TnlO as a region of homology, Genetics 94: 1–14.Google Scholar
  25. Coetzee, J. N., 1979, Genetic circularity of the Proteus mirabilislinkage map, J. Gen. Microbiol. 110: 171 – 176.PubMedGoogle Scholar
  26. Cornelis, G., Ghosal, D., and Saedler, H, 1978, Tn951: A new transposon carrying a lactose operon, Mol. Gen. Genet. 160: 215 – 224.PubMedGoogle Scholar
  27. Cornelis, G., Sommer, H., and Saedler, H., 1981, Transposon Tn951 is defective and related to Tn3, Mol. Gen. Genet. 184: 241 – 248.PubMedGoogle Scholar
  28. Crawford, I., Nichols, B. P., and Yanofsky, C., 1980, Nucleotide sequence of the trpBgene in Escherichia coliand in Salmonella typhimurium, J. Mol. Biol. 142: 489 – 502.PubMedGoogle Scholar
  29. Davey, R. B., and Reanny, D. C., 1980, Extrachromosomal genetic elements and adaptive evolution of bacteria, in: Evolutionary Biology, Vol. 13 ( M. K. Hecht, W. C. Steere, B. Wallace, eds.), pp. 113 – 147, Plenum, New York.Google Scholar
  30. Dean, H. F., and Morgan, A. F., 1983, Integration of R91-5: Transposon 501 into the PseudomonasputidaPPN chromosome and genetic circularity of the chromosomal map, J. Bacteriol. 153: 485 – 497.PubMedGoogle Scholar
  31. Defez, R., and De Felice, M., 1981, Cryptic operons for p-glucoside metabolism in Escherichia coliK12: Genetic evidence for a regulatory protein, Genetics 97: 11 – 25.PubMedGoogle Scholar
  32. Deonier, R., 1987, Locations of Native Insertion Sequence Elements, in: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology ( J. L. Ingraham, B. Magasanik, M. Schaechter, K. B. Low, F. C. Neidhart, H. E. Umbarger, eds.), pp. 982 – 989, American Society for Microbiology, Washington, D.C.Google Scholar
  33. Diaz, R., Barnsley, P., and Pritchard, R. H., 1979, Location and characterization of a new replication origin in the E. coliK-12 chromosome, Mol. Gen. Genet. 175: 151 – 157.PubMedGoogle Scholar
  34. Doolittle, W. F., 1982, Selfish DNA after 14 months, in: Genome Evolution( G. A. Dover and R. B. Flavell, eds.), pp. 3 – 28, Academic, Orlando, Florida.Google Scholar
  35. Doolittle, W. F., and Sapienza, C., 1980, Selfish genes, the phenotype paradigm and genome evolution, Nature (Lond.) 284: 601 – 603.Google Scholar
  36. DuBose, R. F., Dykhuizen, D. E., and Hartl, D. L., 1988, Genetic exchange among natural isolates of bacteria: Recombination within the phoA gene of Escherichia coli, Proc. Natl. Acad. Sci. USA 85: 7036 – 7040.PubMedGoogle Scholar
  37. Dykhuizen, D. E., and Green, L., 1986, DNA sequence variation, DNA phylogeny, and recombination in E. coli, Genetics 113: s71.Google Scholar
  38. Dykhuisen, D. D., Sawyer, S. A., Green, L., Miller, R. D., and Hartl, D. L., 1985, Joint distribution of insertion elements IS4 and IS5 in natural isolates of Escherichia coli, Genetics 111: 219 – 231.Google Scholar
  39. Dykstra, C., Prashner, D., and Kushner, S. R., 1984, Physical and biochemical analysis of the cloned recBand recCgenes of Escherichia coliK-12, J. Bacteriol. 157: 211 – 27.Google Scholar
  40. Enomoto, M., Oosawa, K., and Momota, H., 1983, Mapping of the pinlocus coding for a site-specific recombinase that causes flagella-phase variation in Escherichia coliK-12, J. Bacteriol. 156: 663 – 668.PubMedGoogle Scholar
  41. Espion, D., Kaiser, K., and Dambly-Chaudiere, C., 1983, A third defective lambdoid prophage of Escherichia coliK-12 defined by the λ derivative λ qinIII, J. Mol. Biol. 170: 611 – 633.PubMedGoogle Scholar
  42. Falkow, S., 1975, Infectious Multiple Drug Resistance, Pion Ltd., London.Google Scholar
  43. Freter, R., 1984, Factors affecting conjugal plasmid transfer in natural bacterial communities, in: Current Perspectives in Microbial Ecology( M. J. Klug and C. A. Reddy, eds.), pp. 105 – 114, American Society for Microbiology, Washington, D.C.Google Scholar
  44. Gouy, M., and Gautier, C., 1982, Codon usage in bacteria: correlation with gene expressivity, Nucleic Acids Res. 10: 7055 – 7074.PubMedGoogle Scholar
  45. Graham, J. B., and Istock, C. A., 1979, Gene exchange and natural selection cause Bacillus subtilisto evolve in soil cultures, Science 204: 637 – 639.PubMedGoogle Scholar
  46. Graham, J. B., and Istock, C. A., 1981, Parasexuality and microevolution in experimental populations of Bacillus subtilis, Evolution 35: 954 – 963.Google Scholar
  47. Grantham, R., Gautier, C., Gouy, M., Jacobzone, M., and Mercier, R., 1981, Codon catalog usage is a genome strategy modulated for gene expressivity, Nucl. Acids Res. 9: r43 – r74.PubMedGoogle Scholar
  48. Guiso, N., and Ullman, A., 1976, Expression and regulation of lactose genes carried by plasmids, J. Bacteriol. 127: 691 – 697.PubMedGoogle Scholar
  49. Hall, B. G., 1988, Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence, Genetics 120: 887 – 897.PubMedGoogle Scholar
  50. Hall, B. G., Yokoyama, S., and Calhoun, D., 1984, Role of cryptic genes in microbial evolution, Mol Biol. Evol. 1: 109 – 124.Google Scholar
  51. Harshman, L., and Riley, M., 1980, Conservation and variation of nucleotide sequences in Escherichia colistrains isolated from nature, J. Bacteriol. 144: 560 – 568.PubMedGoogle Scholar
  52. Harayama, S., Lehrbach, P. R., and Timmis, K. N., 1984, Transposon mutagenesis analysis of meta-cleavage pathway operon genes of the TOL plasmid of Pseudomonas putidamt-2, J. Bacteriol. 160: 251 – 255.PubMedGoogle Scholar
  53. Hedrick, P, W., and Thomson, G., 1986, A two-locus neutrality test: Applications to humans, E. coliand lodgepole pine, Genetics 112: 135 – 156.PubMedGoogle Scholar
  54. Henner, D. J. and Hoch, J. A., 1980, The Bacillus subtilischromosome, Microbiol. Rev. 44: 57 – 82.PubMedGoogle Scholar
  55. Herdman, M., 1985, The evolution of bacterial genomes, in: The Evolution of Genome Size( T. Cavalier-Smith, ed.), pp. 37 – 68, Wiley, New York.Google Scholar
  56. Hiestand-Nauer, R., and Iida, S., 1983, Sequence of the site-specific recombinase gene cinand of its substrates serving in the inversion of the C segment of bacteriophage P1, EMBO J. 2: 1733 – 1740.PubMedGoogle Scholar
  57. Highton, P., Chang, YU., Marcotte, Jr., W., and Schnaitman, C., 1985, Evidence that the outer membrane protein gene nmpCof Escherichia coliK-12 lies within the defective qsr'prophage, J. Bacteriol. 162: 256 – 262.PubMedGoogle Scholar
  58. Hill, C. W., and Gray, J. W., 1988, Effects of chromosomal inversion on cell fitness in Escherichia coliK-12, Genetics 119: 771 – 778.PubMedGoogle Scholar
  59. Hill, C. W., and Harnish, B. W., 1981, Inversions between ribosomal RNA genes of Escherichiacolil, Proc. Natl. Acad. Sci. USA 78: 7069 – 7072.PubMedGoogle Scholar
  60. Hill, C. W., and Harnish, B. W., 1982, Transposition of a chromosomal segment bounded by redundant rRNA genes into other rRNA genes in Escherichia coli, J. Bacteriol. 149: 449 – 457.PubMedGoogle Scholar
  61. Holloway, B. W., Krishnapillai, V., and Morgan, A. F., 1979, Chromosomal genetics of Pseudomonas, Microbiol. Rev. 43: 73 – 102.PubMedGoogle Scholar
  62. Holloway, B. W., 1979, Plasmids that mobilize bacterial chromosomes, Plasmid 2: 1 – 19.PubMedGoogle Scholar
  63. Holloway, B., and Morgan, A. F., 1986, Genome organization in Pseudomonas, Annu. Rev. Microbiol. 40: 79 – 105.PubMedGoogle Scholar
  64. Hoover, T. A., Roof, W. D., Foltermann, K. F., O’Donovan, G. A., Bencini, D. A., and Wild, J. R., 1983, Nucleotide sequence of the structural gene (pyrB) that encodes the catalytic polypeptide of aspartate transcarbamorylase of Escherichia coli, Proc. Natl. Acad. Sci. USA 77: 2462 – 2466.Google Scholar
  65. Hooykaas, P. J. J., Peerbolte, R., Regensburg-Tuink, A. J. G., de Vries, P., and Schilperoort, R. A., 1982, A chromosomal linkage map of Agrobacterium tumefaciensand a comparison with the maps of RhizobiumSPP, Mol. Gen. Genet. 188: 12 – 17.Google Scholar
  66. Horowitz, H., Van Arsdell, J., and Piatt, T., 1983, Nucleotide sequence of the trpDand trpCgene of Salmonella typhimurium, J. Mol. Biol. 169: 775 – 797.PubMedGoogle Scholar
  67. Houghton, J. E., Bencini, D. E., O’Donovan, G. A., and Wild, J. R., 1984, Protein differentiation: A comparison of aspartate transcarbamoylase and ornithine transcarbamoylase from Escherichia coliK12, Proc. Natl. Acad. Sci. USA 81: 4864 – 4868.PubMedGoogle Scholar
  68. Hu, S., Ptashne, K., Cohen, S. M., and Davidson, N., 1975, αβ sequence of F is IS3, J. Bacteriol. 123:687–692.Google Scholar
  69. Hu, M., and Deonier, R., 1981a, Comparison of IS 1, IS2, and IS3 copy number in Escherichia colistrains K12, B and C, Gene 16: 161 – 170.Google Scholar
  70. Hu, M., and Deonier, R., 1981b, Mapping of IS1 elements flanking the argFgene region on the Escherichia coliK-12 chromosome, Mol. Gen. Genet. 181: 222 – 229.Google Scholar
  71. Ikemura, T., 1981, Correlation between the abundance of Escherichia colitransfer RNAs and the occurrence of the respective codon in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. colitranslational system, J. Mol. Biol. 151: 389 – 409.PubMedGoogle Scholar
  72. Kaiser, K., 1980, The origin of Q-independent derviatives of phage X, Mol. Gen. Genet. 179: 547 – 554.PubMedGoogle Scholar
  73. Kaiser, K., and Murray, N. E., 1979, Physical characterization of the”Rac-prophage“in E. coliK12, Mol. Gen. Genet. 175: 159 – 174.PubMedGoogle Scholar
  74. Kamp, D., and Kahmann, R., 1981, The relationship of two invertible segments in bacteriophage Mu and Salmonella typhimuriumDNA, Mol. Gen. Genet. 184: 564 – 566.PubMedGoogle Scholar
  75. Kaplan, J. B., Goncharoff, P., Seibold, A. M., and Nichols, B., 1984, Nucleotide sequence of the Acinetobac- ter caleoaceticus trpGDCgene cluster, Mol. Biol. Evol. 1: 456 – 472.PubMedGoogle Scholar
  76. Kleckner, N., 1981, Transposable elements in prokaryotes, Annu. Rev. Genet. 15: 341 – 404.PubMedGoogle Scholar
  77. Kricker, M., and Hall, B. G., 1984, Directed evolution of cellobiose utilization in Escherichia coliK12, Mol. Biol. Evol. 1: 171 – 182.PubMedGoogle Scholar
  78. Kronstad, J. W., and Whitely, H. R., 1984, Inverted repeat sequences flank a Bacillus thurigiensiscrystal protein gene, J. Bacteriol. 160: 95 – 102.PubMedGoogle Scholar
  79. Kutsukake, K., Nakao, T., and lino, T., 1985, A gene for DNA invertase and an invertible DNA in Escherichia coliK-12, Gene 34: 343 – 350.PubMedGoogle Scholar
  80. Lam, S., and Roth, J. R., 1983, IS200: A Salmonella-specific insertion sequence, Cell 34: 951 – 960.PubMedGoogle Scholar
  81. Lampel, K. A., and Riley, M., 1982, Discontinuity of homology of Escherichia coliand Salmonella typhimuriumDNA in the lacregion, Mol. Gen. Genet. 186: 82 – 86.PubMedGoogle Scholar
  82. Lawther, R. P., Calhoun, D. H., Adams, C. W., Hauser, C. A., Gray, J., and Hatfield, G. W., 1981, Molecular basis of valine resistance in Escherichia coliK-12, Proc. Natl. Acad. Sci. USA 78: 922 – 925.PubMedGoogle Scholar
  83. Lin, R.-J., Capage, M., and Hill, C. W., 1984, A repetitive sequence, rhs, responsible for duplications within the Escherichia coliK12 chromosome, J. Mol. Biol. 177: 1 – 18.PubMedGoogle Scholar
  84. Link, C. D., and Reiner, A. M., 1982, Inverted repeats surround the ribitol—arabitol genes of E. coli C. Nature (Lond.) 298: 94 – 96.Google Scholar
  85. Link, C. D., and Reiner, A. M., 1983, Genotypic exclusion: A novel relationship between the ribitol—arabitol and galactitol genes of E. coli, Mol. Gen. Genet. 189: 337 – 339.PubMedGoogle Scholar
  86. Louarn, J. M., Bouche, J. P., Legendre, F., Louarn, J., and Patte, J., 1985, Characterization and properties of very large inversions of the E. colichromosome along the origin-to-terminus axis, Mol. Gen. Genet. 201: 467 – 476.PubMedGoogle Scholar
  87. Maguin, E., Brody, H., Hill, C. W., and D’Ari, R., 1986, SOS-associated division inhibition gene sfiC is part of excisable element el4 in Escherichia coli, J. Bacteriol. 168: 464 – 466.PubMedGoogle Scholar
  88. Mahan, M. J., and Roth, J. R., 1988, Reciprocality of recombination events that rearrange the chromosome, Genetics 120: 23 – 35.PubMedGoogle Scholar
  89. McMahon, P. C., 1973, Mapping the chromosome of Yersinia pseudotuberculosisby interrupted mating, J. Gen. Microbiol. 77: 61 – 69.PubMedGoogle Scholar
  90. Meyer, T. F., Mlawer, N., and So., M., 1982, Pilus expression in N. gonorrhoeaeinvolves chromosome rearrangement, Cell 30: 45 – 52.PubMedGoogle Scholar
  91. Meyer, T. F., Billyard, E., Haas, R., Storzbach, S., and So, M., 1984, Pilus genes of Neisseria gonorrhoeae: Chromosomal organization and DNA sequence, Proc. Natl. Acad. Sci. USA 81: 6110 – 6114.PubMedGoogle Scholar
  92. Michiels, T., and Cornelis, G., 1984, Detection and characterization of Tn2501, a transposon included within the lactose transposon Tn951, J. Bacteriol. 158: 866 – 871.PubMedGoogle Scholar
  93. Middleton, R. B., and Mojica-a, T., 1971, Homology in the Enterobateriaceae based on intercrosses between species, in: Advances in Genetics, Vol. 16 ( E. W. Caspari, ed.), pp. 53 – 79, Academic, Orlando, Florida.Google Scholar
  94. Milkman, R., and Crawford, I. P., 1983, Clustered third-base substitutions among wild strains of Escherichia coli, Science 221: 378 – 380.PubMedGoogle Scholar
  95. Milkman, R., and Stolzfus, A., 1988, Molecular evolution of the Escherichia colichromosome. II. Clonal segments, Genetics 120: 359 – 366.PubMedGoogle Scholar
  96. Mizuno, T,. Chou, M. Y., and Inouye. M., 1983, A comparative study on the genes for three porins of the Escherichia coliouter membrane: DNA sequence of the osmoregulated ompCgene, J. Biol. Chem. 258: 6932 – 6940.Google Scholar
  97. Neimark, H., and London, J., 1982, Origins of the mycoplasmas: Sterol non-requiring mycoplasmas evolved from streptococci, J. Bacteriol. 150: 1259 – 1265.PubMedGoogle Scholar
  98. Nichols, B., and Yanofsky, C., 1979, Nucleotide sequences of trpAof Salmonella typhimuriumand Escherichia coli: An evolutionary comparison, Proc. Natl. Acad. Sci. USA 76: 5244 – 5248.PubMedGoogle Scholar
  99. Nichols, B. P., Blumenberg, M., and Yanofsky, C., 1981, Comparison of the nucleotide sequence of trpA and sequences immediately beyond the trpopcron of Klebsiella aerogenes, Salmonella typhimuriumand Escherichia coli, Nucl. Acids. Res. 9: 1743 – 1755.PubMedGoogle Scholar
  100. Nichols, B. P., Miozzari, G. F., van Cleemput, M., Bennett, G. N., and Yanofsky, C., 1980, Nucleotide sequences of the trpGregions of Escherichia coli, Shigella dysenteriae, Salmonella typhimuriumand Serratia marcescens, J. Mol. Biol. 142: 503 – 517.PubMedGoogle Scholar
  101. Nyman, K., Nakamura, K., Ohtsubo, H., and Ohtsubo, E., 1981, Distribution of the insertion element IS1 in gram-negative bacteria, Nature (Lond.) 289: 602 – 612.Google Scholar
  102. Nyman, K., Ohtsubo, H., Davison, D., and Ohtsubo. E., 1983, Distribution of insertion element IS1 in natural isolates of Escherichia coli, Mol. Gen Genet. 189: 516 – 518.PubMedGoogle Scholar
  103. Ochman, H., Whittam, T. S., Caugant, D. A., and Selander, R. K., 1983, Enzyme polymorphism and genetic population structure in Escherichia coliand Shigella, J. Gen. Microbiol. 129: 2715 – 2726.PubMedGoogle Scholar
  104. Ogasawara, N., Moriya, S., von Meyenburg, K., Hansen, F. G., and Yoshikawa, H., 1985, Conservation of genes and their organization in the chromosomal replication origin region of Bacillus subtilisand Escherichia coli, EMBO J. 4: 3345 – 3350.PubMedGoogle Scholar
  105. Orgel, C. E., and Crick, F. H. C., 1980, Selfish DNA: The ultimate parasite, Nature (Lond.) 284: 604 – 607.Google Scholar
  106. Parker, L. L., and Hall, B. G., 1988, A fourth E. coligene system with the potential to evolve β-glucosidase utilization, Genetics 119: 485 – 490.PubMedGoogle Scholar
  107. Perlak, F. J., and Thorne, C. B., 1981, Genetic map of Bacillus lichenformis, in: Sporulation and Germination( H. S. Levinson, A. L. Sonensheim, and D. J. Tipper, eds.), pp. 78 – 82, American Society for Microbiology, Washington, D.C.Google Scholar
  108. Pischl, D. C., and Farrand, S. K., 1984, Characterization of transposon Tn5-facilitated donor strains and development of a chromosomal linkage map for Agrobacterium tumefaciens, J. Bacteriol. 159: 1 – 8.PubMedGoogle Scholar
  109. Plasterk, R. H. A., and van de Putte, P., 1985, The invertible P-DNA segment in the chromosome of Escherichia coli, EMBO J. 4: 237 – 242.PubMedGoogle Scholar
  110. Reanny, D. C., Roberts, W. P., and Kelly, W. J., 1982, genetic interactions among microbial communities, in: Microbial Interactionsand Communities, Vol. 1 (A. T. Bull and J. H. Slater, eds.), pp. 287–322, Academic, Orlando, Florida.Google Scholar
  111. Rebollo, J. E., Francois, V., and Louarn, J. M., 1988, Detection and possible role of two large non-divisible zones on the E. colichromosome, Proc. Natl. Acad. Sci. USA 85: 9391 – 9395.PubMedGoogle Scholar
  112. Reynolds, A. E., Felton, J., and Wright A., 1981, Insertion of DNA activates the cryptic bgloperon in E. coliK12, Nature (Lond.) 293: 625 – 629.Google Scholar
  113. Reynolds, A. E., Mahadevan, S., LeGrice, S. F. J., and Wright, A., 1986, Enhancement of bacterial gene expression by insertion elements or by mutation in a CAP-cAMP binding site, J. Mol. Biol. 191: 85 – 95.PubMedGoogle Scholar
  114. Richmond, M. H., 1973, Resistance factors and their ecological importance to bacteria and to man, in: Prog. Nucl. Acid Res. Mol. Biol. 13: 191 – 248.Google Scholar
  115. Riley, M., 1985, Discontinuous processes in the evolution of the bacterial genome, in: Evolutionary Biology, Vol. 19 ( M. Hecht, G. Prance, and B. Wallace, eds.), pp. 1 – 36, Plenum, New York.Google Scholar
  116. Riley, M., and Anilionis, A., 1978, Evolution of the bacterial genome, Annu. Rev. Microbiol. 32: 519 – 560.PubMedGoogle Scholar
  117. Riley, M., 1984, Arrangement and rearrangement of bacterial genomes, in: Microorganisms as Model Systems for Studying Evolution( R. P. Mortlock, ed.), pp. 285 – 315, Plenum, New York.Google Scholar
  118. Riley, M., and Krawiec, S., 1987, Genome organization, in: Escherichia coliand Salmonella typhimurium: Cellular and Molecular Biology( J. L. Ingraham, B. Magasanik, M. Schaechter, K. B. Low, F. C. Neidhart, and H. E. Umbarger, eds.), pp. 967 – 981, American Society for Microbiology, Washington, D.C.Google Scholar
  119. Rowley, D. J., 1953, Interrelationships between amino acids in the growth of coliform organisms, J. Gen. Microbiol. 9: 37 – 43.PubMedGoogle Scholar
  120. Ryder, T. B., Davison, D. B., Rosen, J. I., Ohtsubo, E., and Ohtsubo, H., 1982, Analysis of plasmid genome evolution based on nucleotide sequence comparison of two related plasmids of Escherichia coli, Gene 17: 299 – 310.PubMedGoogle Scholar
  121. Sanderson, K. E., 1976, Genetic relatedness in the family Enterobacteriaceae, Annu. Rev. Microbiol. 30: 327 – 349.PubMedGoogle Scholar
  122. Sanderson, K. E., and Roth, J. R., 1983, Linkage map of Salmonella typhimurium, edition VI, Microbiol. Rev. 47: 410 – 453.PubMedGoogle Scholar
  123. Savić, D., Romac, S. P., and Ehrlich, S. D., 1983, Inversion in the lactose region of Escherichia coliK-12: Inversion termini map within IS3 elements α3 β3 and α5 β5, J. Bacteriol. 155: 943 – 946.PubMedGoogle Scholar
  124. Schaeffer, S., and Malamy, A., 1969, Taxonomic investigations on expressed and cryptic phospho-β- glucosidases in Enterobacteriacea, J. Bacteriol. 99: 422 – 433.Google Scholar
  125. Schmid, M. B., and Roth, J. R., 1983a, Genetic Methods for analysis and manipulation of inversion mutations in bacteria, Genetics 105:517–537.Google Scholar
  126. Schmid, M. B., and Roth, J. R., 1983b, Selection and end point distribution of bacterial inversion mutations, Genetics 105:539–557.Google Scholar
  127. Schnaitman, C., Smith, D., and Forn de Salsas, M., 1975, Temperate bacteriophage which causes the production of a new major outer membrane protein by Escherichia coli, J. Virol. 15: 1121 – 1130.PubMedGoogle Scholar
  128. Schneider, A. M., and Anagnostopoulos, C., 1983, Bacillus subtilisstrains carrying two nontandem duplications of the trpE-ilvAand the purB-treregions of the chromosome, J. Gen. Microbiol. 129: 687 – 701.PubMedGoogle Scholar
  129. Schupp, T., Hutter, R., and Hopwood, D. A., 1975, Genetic recombination in Nocardia mediterranei, J. Bacteriol. 121: 128 – 136.PubMedGoogle Scholar
  130. Segal, E., Hagblom, P., Seifert, H., and So, M., 1986, Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments, Proc. Natl, Acad. Sci. USA 83: 2177 – 2181.Google Scholar
  131. Selander, R. K., Caugant, D. A., and Whittam, T. S., 1987, Genetic structure and variation in natural populations of Escherichia coli, in: Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology( J. L. Ingraham, B. Magasanik, M. Schaechter, K. B. Low, F. C. Neidhardt, H. E. Umbarger, eds.), pp. 1625 – 1648, American Society for Microbiology, Washington, D.C.Google Scholar
  132. Selander, R. K., and Levin, B. R., 1980, Genetic diversity and structure in Escherichia colipopulations, Science 210: 545 – 547.PubMedGoogle Scholar
  133. Shapiro, H. S., 1970, Distribution of purines and pyrimidines in nucleic acids, in: Handbook of Biochemistry: Selected Data for Molecular Biology, 2nd ed. ( H. A. Sober, ed.), pp. H24 – H79, CRC Press, Boca Raton, Florida.Google Scholar
  134. Sharp, P. A., Cohen, S. N., and Davidson, N., 1973, Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coliII, Structure of drug resistance (R) factors and F factors, J. Mol. Biol. 75: 235 – 255.PubMedGoogle Scholar
  135. Sharp, P. M., and Li, W.-H., 1987, The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias, Mol. Biol. Evol.: 220 – 230.Google Scholar
  136. Simon, M., Seig, J., Silverman, M., Mandel, G., and Doolittle, R., 1980, Phase variation: Evolution of controlling element, Science 209: 1370 – 1374.PubMedGoogle Scholar
  137. Sinclair, M. I., and Holloway, B. W., 1982, A chromosomally located transposon in Pseudomonas aeruginosa, J. Bacteriol. 151: 569 – 579.PubMedGoogle Scholar
  138. Sinclair, M. I., Maxwell, P. C., Lyon, B. R., and Holloway, B. W., 1986, Chromosomal location of TOL plasmid DNA in Pseudomonas putida, J. Bacteriol. 168: 1302 – 1308.PubMedGoogle Scholar
  139. Slater, H. J., 1984, Genetic interactions in microbial communities, in: Current Perspectives in Microbial Ecology( M. J. Klug and C. A. Reddy, eds.), pp. 87 – 93, American Society for Microbiology, Washington, D.C.Google Scholar
  140. Slater, H. J., 1985, Gene transfer in microbial communities, in: Engineered organisms in the environment: Scientific issues( H. O. Halvorson, D. Pramer and M. Rogul, eds.), pp. 89 – 98, American Society for Microbiology, Washington, D.C.Google Scholar
  141. Smith, C. L., and Cantor, C. R., 1987, Purification, specific fragmentation, and separation of large DNA molecules, Methods Enzymol. 155: 449 – 467.PubMedGoogle Scholar
  142. Southern, E., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol. 98: 504 – 517.Google Scholar
  143. Stackebrandt, E., 1985, Phylogeny and phylogenetic classification of prokaryotes, in: Evolution of Prokaryotes( K. H. Schleiber and E. Stackebrandt, eds.), pp. 309 – 334, Academic, Orlando, Florida.Google Scholar
  144. Stoltzfus, A., Leslie, J. F., and Milkman, R., 1988, Molecular evolution of the Escherichia colichromosome. I. Analysis of structure and natural variation in a previously uncharacterized region between trp and tonB, Genetics 120: 345 – 358.PubMedGoogle Scholar
  145. Strathern, A., and Herskowitz, I., 1975, Defective prophage in E. coliK12 strains, Virology 67: 136 – 143.PubMedGoogle Scholar
  146. Tanka, M., Yamamoto, T., and Sawai, T., 1983, Evolution of complex resistance transposons from an ancestral mercury transposon, J. Bacteriol. 153: 1432 – 1438.Google Scholar
  147. Timmons, M. S., Bogardus, A. M., and Deonier, R. C., 1983, Mapping of chromosomal IS5 elements that mediate type II F-prime plasmid excision in Escherichia coliK-12, J. Bacteriol. 153: 395 – 407.PubMedGoogle Scholar
  148. Timmons, M. S., Spear, K., and Deonier, R. C., 1984, Insertion element IS 121 is near proAin the chromosomes of Escherichia coliK-12 strains, J. Bacteriol. 16): 1175 – 1177.Google Scholar
  149. Wallace, D. C., and Morowitz, H. J., 1973, Genome size and evolution, Chromosoma 40: 121 – 126.PubMedGoogle Scholar
  150. Watanabe, T., 1963, Infectious heredity of multiple drug resistance in bacteria, Bacteriol. Rev. 27: 87 – 115.PubMedGoogle Scholar
  151. Whittam, T. S., Ochman, H., and Selander, R. K., 1983, Multilocus genetic structure in natural populations of Escherichia coli, Proc. Natl. Acad. Sci. USA 80: 1751 – 1755.PubMedGoogle Scholar
  152. Wiman, M., Bertani, G., Kelly, B., and Sasaki, I., 1970, Genetic map of Escherichia colistrain C, Mol. Gen. Genet. 107: 1 – 31.PubMedGoogle Scholar
  153. Woese, C. R., Maniloff, J., and Zablen, L. B., 1980, Phylogenetic analysis of the mycoplasmas, Proc. Natl. Acad. Sci. USA 77: 494 – 498.PubMedGoogle Scholar
  154. Xia, X.-M., and Enomoto, M., 1986, A naturally occurring chromosomal inversion in Escherichia coliK-12, Mol. Gen. Genet. 205: 376 – 379.PubMedGoogle Scholar
  155. Yamagata, H., Nakamura, K., and Inouye, M., 1981, Comparison of the lipoprotein gene among the enterobac- teriacea, J. Biol. Chem. 256: 2194 – 2198.PubMedGoogle Scholar
  156. Yanofsky, C., and Van Cleemput, M., 1982, Nucleotide Sequence of trpEof Salmonella typhimuriumand its homology with the corresponding sequence of E. coli, J. Mol. Biol. 155: 235 – 246.Google Scholar
  157. Yokota, T., Sugisaki, H., Takanami, M., and Kaziro, Y., 1980, The nucleotide sequence of the clones tufAgene of Escherichia coli, Gene 12: 25 – 31.PubMedGoogle Scholar
  158. York, M. K., and Stodolsky, M., 1981, Characterization of PI argFderivatives from Escherichia coliK12 transduction, Mol. Gen. Genet. 181: 230 – 240.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Monica Riley
    • 1
  1. 1.Biochemistry DepartmentState University of New York at Stony BrookStony BrookUSA

Personalised recommendations