Advertisement

Regulation of Bacterial Gene Expression

  • William S. Reznikoff
Part of the Bacteria in Nature book series (BANA, volume 3)

Abstract

The total properties of any bacterium result from an interplay between its genome and its environment. The bacterium Escherichia coli carries approximately 3000 genes, but this total repertoire describes its potential properties and, in reality, only a small subset of this genetic information is expressed at any given moment. A primary influence of the environment is the determination of what subset is expressed. It presents the cell with the signals that ultimately lead to gene regulation—the turning on or off of gene expression.

Keywords

Cold Spring Harbor Translation Initiation Transcription Initiation Cold Spring Harbor Laboratory Transcription Termination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrewes, F. W., 1922, Studies in group-agglutination. I. The Salmonellagroup and its antigenic structure, J. Pathol. 25: 515 – 521.Google Scholar
  2. Bahl, C. P., Wu, R., Stawinsky, J., and Narang, S., 1977, Minimal length of the lactose operator sequence for the specific recognition by the lactose repressor, Proc. Natl. Acad. Sci. USA 74: 966 – 970.PubMedGoogle Scholar
  3. Barkley, M. D., and Bourgeois, S., 1978, Repressor recognition of operator and effectors, in: The Operon( J. H. Miller and W. S. Reznikoff, eds.), pp. 177 – 220, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  4. Baughman, G., and Nomura, M., 1983, Localization of the target site for translational regulation of the Lll operon and direct evidence for translational coupling in Escherichia coli, Cell 34: 979 – 988.PubMedGoogle Scholar
  5. Beckwith, J., Davies, J., and Gallant, J. (eds.), 1983, Gene Function in Prokaryotes, Cold Spring Harbor Laboratory, New York.Google Scholar
  6. Belfort, M., 1980, The cll-independent expression of the phage λ intgene in RNase III-defective E. coli, Gene 11: 149 – 155.PubMedGoogle Scholar
  7. Bertrand, K., Squires, C., and Yanofsky, C., 1976, Transcription termination in vivoin the leader region of the tryptophan operon of Escherichia coli, J. Mol. Biol. 103: 319 – 337.PubMedGoogle Scholar
  8. Bertrand, K., and Yanofsky, C., 1976, Regulation of transcription termination in the leader region of the tryptophan operon of Escherichia coliinvolves tryptophan or its metabolic product, J. Mol. Biol. 103: 339 – 349.PubMedGoogle Scholar
  9. Beyreuther, K., 1978, Chemical structure and functional organization of lacrepressor from Escherichia coli, in: The Operon( J. H. Miller and W. S. Reznikoff, eds.), pp. 123 – 154, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  10. Branlant, C., Krol, A., Machatt, A., and Ebel, J.-P., 1981, The secondary structure of the protein LI binding region of ribosomal 23S RNA. Homologies with putative secondary structures of the LI 1 mRNA and of a region of mitochondrial 16S rRNA, Nucl. Acids Res. 9: 293 – 307.PubMedGoogle Scholar
  11. Brot, N., Caldwell, P., and Weissbach, H., 1980, Autogenous control of Escherichia coliribosomal protein L10 synthesis in vitro, Proc. Natl. Acad. Sci. USA 77: 2592 – 2595.Google Scholar
  12. Caruthers, M. H., 1980, Deciphering the protein-DNA recognition code, Acc. Chem. Res. 13: 155 – 160.Google Scholar
  13. Chamberlin, M., McGrath, J., and Waske, L., 1970, New RNA polymerase from Escherichia coliinfected with bacteriophage T7, Nature (Lond.) 228: 227 – 231.Google Scholar
  14. Cohen, G. N., and Jacob, F., 1959, Sur la repression de la syntheese des enzymes intervenant dans la formation du tryptophan chez E. coli, C. R. Acad. Sci. 248: 3490 – 3495.Google Scholar
  15. de Crombrugghe, B., Busby, S., and Buc, H., 1983, Activation of transcription by the cyclic AMP receptor protein, in: Biological Regulation and Development, Vol. III-B ( K. Yamamoto, ed), pp. 129 – 167, Plenum, New York.Google Scholar
  16. de Crombrugghe, B., and Pastan, I., 1978, Cyclic AMP, the cyclic AMP receptor protein, and their dual control of the galactose operon, in: The Operon( J. H. Miller and W. S. Reznikoff, eds.), pp. 303 – 324, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  17. Dickson, R. C., Abelson, J., Barnes, W. M., and Reznikoff, W. S., 1975, Genetic regulation: The laccontrol region. Science 187: 27 – 35.PubMedGoogle Scholar
  18. Dickson, R. C., Abelson, J., Johnson, P., Reznikoff, W. S., and Barnes, W. M., 1977, Nucleotide sequence changes produced by mutations in the lacpromoter of Escherichia coli, J. Mol. Biol. 111: 65 – 75.PubMedGoogle Scholar
  19. Fakuda, R., 1980, Autogenous regulation of the synthesis of ribosomal proteins, L10 and L7/12, in Escherichia coli, Mol. Gen. Genet. 178: 483 – 486.Google Scholar
  20. Fallon, A. M., Jinks, C. S., Strycharz, G. D., and Nomura, M., 1979, Ribosomal protein synthesis in Escherichia coliregulated by selective mRNA inactivation, Proc. Natl. Acad. Sci. USA 76: 3411 – 3415.PubMedGoogle Scholar
  21. Friedman, D. I., Schauer, A. T., Baumann, M. R., Baron, L. S., and Adhya, S. L., 1981, Evidence that ribosomal protein S10 participates in control of transcription termination, Proc. Natl. Acad. Sci. USA 78: 1115 – 1118.PubMedGoogle Scholar
  22. Gardner, J. F., 1979, Regulation of the threonine operon: Tandem threonine and isoleucine codons in the control region and translational control of transcription termination, Proc. Natl. Acad. Sci. USA76: 1706 – 1710.PubMedGoogle Scholar
  23. Gemmill, R. M., Wessler, S. R., Keller, E. B., and Calvo, J. M., 1979, leu Operon of Salmonella typhimurium is controlled by an attenuation mechanism, Proc. Natl. Acad. Sci. USA 76:4941–4945.Google Scholar
  24. Gilbert, W., 1976, Starting and stopping sequences for the RNA polymerase, in: RNA Polymerase( R. Losick and M. Chamberlin, eds.), pp. 193 – 206, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  25. Gilbert, W., Gralla, J., Majors, J., and Maxam, A., 1975, Lactose operator sequences and the action of lac repressor, in: Protein-Ligand Interactions (H. Sund and G. Blauer, eds.), pp. 193–210, de Gruyter, Berlin.Google Scholar
  26. Gilman, M. Z., Wiggs, J. L., and Chamberlin, M. J., 1981, Nucleotide sequence of two Bacillus subtilispromoters used by Bacillus subtilissigma-28 RNA polymerase, Nucl. Acids Res. 9: 5991 – 5999.PubMedGoogle Scholar
  27. Gottesman, M., Oppenheim, A., and Court, D., 1982, Retroregulation: Control of gene expression from sites distal to the gene, Cell 29: 727 – 728.PubMedGoogle Scholar
  28. Gourse, R. L., Thurlow, D. L., Gerbi, S. A., and Zimmermann, R. A., 1981, Specific binding of a prokaryotic ribosomal protein to a eukaryotic ribosomal RNA: Implications for evolution and autoregulation, Proc. Natl. Acad. Sci. USA 78: 2722 – 2726.PubMedGoogle Scholar
  29. Greenblatt, J., 1981, Regulation of transcription termination by the Ngene protein of bacteriophage lambda, Cell 24: 8 – 9.PubMedGoogle Scholar
  30. Greenblatt, J., Li, J., Adhya, S., Friedman, D. I., Baron, L. S., Redfield, B., Jung, H.F., and Weissback, H., 1980, L factor that is required for β-galactosidase synthesis is thenusAgene product involved in transcription termination, Proc. Natl. Acad. Sci. USA77: 1991 – 1994.PubMedGoogle Scholar
  31. Grossman, A. D., Erickson, J. W., and Gross. C. A., 1984, The htpRgene product of E. coliis a sigma factor for heatshock promoters, Cell 38: 383 – 390.PubMedGoogle Scholar
  32. Gryczan, T., Shivakumar, A. G., and Dubnau, D., 1980, Characterization of chimeric plasmid cloning vehicles in Bacillus subtilis, J. Bacteriol. 131: 246 – 253.Google Scholar
  33. Guarente, L., Nye, J. S., Hochschild, A., and Ptashne, M., 1982, Mutant X phage repressor with a specific defect in its positive control function, Proc. Natl. Acad. Sci. USA 79: 2236 – 2239.PubMedGoogle Scholar
  34. Guarneros, G., and Galindo, J. M., 1979, The regulation of integrative recombination by the b2region and the ellgene of bacteriophage λ, Virology 95: 119 – 126.PubMedGoogle Scholar
  35. Guarneros, G., Montanez, C., Hernandez, T., and Court, D., 1982, Post-transcriptional control of bacteriophage X intgene expression from a site distal to the gene, Proc. Natl. Acad. Sci. USA 79: 238 – 242.PubMedGoogle Scholar
  36. Haldenwang, W. G., and Losick, R., 1980, Novel RNA polymerase a factor from Bacillus subtilis, Proc. Natl. Acad. Sci. USA 77: 7000 – 7004.PubMedGoogle Scholar
  37. Heinemann, S. F., and Spiegelman, W. G., 1971, Role of the gene Nproduct in phage lambda, Cold Spring Harbor Symp. Quant. Biol. 35: 315 – 318.Google Scholar
  38. Hirschman, J., Wong, P.-K., Sei, K., Keener, J., and Kustu, S., 1985, Products of the nitrogen regulatory genes ntrAand ntrCof enteric bacteria activate glnAtranscription in vivo: Evidence that the ntrAproduct is a sigma factor, Proc. Natl. Acad. Sci. USA 82: 7525 – 7529.PubMedGoogle Scholar
  39. Hopkins, J. D., 1974, A new class of promoter mutations in the lactose operon of Escherichia coli, J. Mol. Biol. 87: 715 – 724.PubMedGoogle Scholar
  40. Horinouchi, S., and Weisblum, B., 1980, Post-transcriptional modification of messenger RNA conformation: Mechanism of erythromycin inducible resistance, Proc. Natl. Acad. Sci. USA 77: 7079 – 7083.PubMedGoogle Scholar
  41. Horinouchi, S., and Weisblum, B., 1981, The control region for erythromycin resistance: Free energy changes related to induction and mutation to constitutive expression, Mol. Gen. Genet. 182: 341 – 348.PubMedGoogle Scholar
  42. Jackson, E. N., and Yanofsky, C., 1973, The region between the operator and first structural gene of the tryptophan operon of Escherichia colimay have a regulatory function, J. Mol. Biol. 76: 89 – 101.PubMedGoogle Scholar
  43. Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol.3: 318 – 356.PubMedGoogle Scholar
  44. Jaurin, B., Grundstrom, T., Bergstrom, S., and Normark, S., 1981, Control and DNA structure of the ampC(3- lactamase gene of Escherichia coli, in: Molecular Biology, Pathogenicity, and Ecology of Bacterial Plasmids( S. B. Levy, R. C. Clowes, and E. L. Koenig, eds.), pp. 169 – 178, Plenum, New York.Google Scholar
  45. Johnson, W. C., Moran, C. P., and Losick, R., 1983, Two RNA polymerase sigma factors from Bacillus subtilisdiscriminate between overlapping promoters for a developmentally regulated gene, Nature (Lond.) 302: 800 – 804.Google Scholar
  46. Kahmann, R., Rudt, F., and Kamp, D., 1984, Substrate and enzyme requirements for in vitrosite-specific recombination in bacteriophage Mu, Cold Spring Harbor Symp. Quant. Biol. 49: 285 – 294.PubMedGoogle Scholar
  47. Kamp, D., and Kahmann, R., 1981, The relationship of two invertible segments in bacteriophage Mu and Salmonella typhimuriumDNA, Mol. Gen. Genet. 184: 564 – 566.PubMedGoogle Scholar
  48. Kania, J., and Brown, D. T., 1976, The functional repressor parts of a tetrameric lacrepressor-β-galactosidase chimera are organized as dimers. Proc. Natl. Acad. Sci. USA 73: 3529 – 3533.PubMedGoogle Scholar
  49. Kjeldgaard, N. O., and Gausing, K., 1974, Regulation of biosynthesis of ribosomes, in: Ribosomes( M. Nomura, A. Tissiéres, and P. Lengyel, eds.) pp. 369 – 392, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  50. Kleckner, N., Morisato, D., Roberts, D., and Bender, J., 1984, Mechanism and regulation of TnlO transposition, Cold Spring Harbor Symp. Quant. Biol. 49: 235 – 244.PubMedGoogle Scholar
  51. Kourilsky, P., Bourguignon, M. F., and Gros, F., 1971, Kinetics of viral transcription after induction of prophage, in: The Bacteriophage Lambda( A. D. Hershey, ed.), pp. 647 – 666, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  52. Lai, C.-J., Dahlberg, J. E., and Weisblum, D., 1973, Structure of an inducibly methylatable nucleotide sequence in 23S ribosomal ribonucleic acid from erythromycin-resistant Staphylococcus aureus, Biochemistry 12: 457 – 463.PubMedGoogle Scholar
  53. Lai, C.-J., and Weisblum, B., 1971, Altered methylation of ribosomal RNA in an erythromycin-resistant strain of Staphylococcus aureus, Proc. Natl. Acad. Sci. USA 68: 856 – 860.PubMedGoogle Scholar
  54. Lederberg, J., and Edwards, B. P. R., 1953, Serotypic recombination in Salmonella, J. Immunol. 71: 232 – 240.PubMedGoogle Scholar
  55. Lederberg, J., and Iino, T., 1956, Phase variation in Salmonella, Genetics41: 743 – 757.PubMedGoogle Scholar
  56. Lee, F., Squires, C. L., Squires, C., and Yanofsky, C., 1976, Termination of transcription in vitroin the Escherichia colitryptophan operon leader region, J. Mol. Biol. 103: 383 – 393.PubMedGoogle Scholar
  57. Lindahl, L., and Zengel, J., 1979, Operon-specific regulation of ribosomal protein synthesis in Escherichia coli, Proc. Natl. Acad. Sci. USA 76: 6542 – 6546.PubMedGoogle Scholar
  58. Losick, R., and Pero, J., 1981, Cascades of sigma factors, Cell 25: 582 – 584.PubMedGoogle Scholar
  59. Majors, J., 1975a, Initiation of in vitro mRNA synthesis from the wild type lac promoter, Proc. Natl. Acad. Sci. USA 72:4394–4398.Google Scholar
  60. Majors, J., 1975b, Specific binding of CAP factor to lac promoter DNA, Nature (Lond.) 256:672–674.Google Scholar
  61. Majors, J., 1977, Control of the E. coli lacoperon at the molecular level, Ph.D. thesis, Harvard University, Cambridge, Massachusetts.Google Scholar
  62. Maquat, L. E., Thornton, K., and Reznikoff, W. S., 1980, lac Promoter mutations located downstream from the transcription start site, J. Mol. Biol. 139:537–549.Google Scholar
  63. Matthews, B. W, Ohtendorf, D. H., Anderson, W. F., and Takeda, Y., 1982, Structure of the DNA-binding region of lacrepressor inferred from its homology with crorepressor, Proc. Natl. Acad. Sci. USA 79: 1428 – 1432.PubMedGoogle Scholar
  64. McClure, W. R., Hawley, D. K., and Malan, T. P., 1982, The mechanism of RNA polymerase activation on the λPrm and lacP+promoters, in: Promoters—Structure and Function( R. L. Rodriguez and M. J. Chamberlin, eds.), pp. 111 – 120, Praeger, New York.Google Scholar
  65. Menzel, R., and Gellert, M., 1983, Regulation of the genes for E. coliDNA gyrase: Homeostatic control of DNA supercoiling, Cell 34: 105 – 113.PubMedGoogle Scholar
  66. Miller, J. H., 1978, The laclgene: Its role in lacoperon control and its use as a genetic system, in: The Operon( J. H. Miller and W. S. Reznikoff, eds.), pp. 31 – 88, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  67. Miller, J. H., and Reznikoff, W. S. (eds.), 1980, The Operon, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  68. Moran, C. P., Jr., Lang, N., Banner, C. D. B., Haldenwang, W. G., and Losick, R., 1981, Promoter for a developmentally regulated gene in Bacillus subtilis, Cell 25: 783 – 791.PubMedGoogle Scholar
  69. Moran, C. P., Jr., Johnson, W. C., and Losick, R., 1982, Close contacts between s37 -RNA polymerase and a Bacillus subtilis chromosomal promoter, J. Mol. Biol. 162:709–713.Google Scholar
  70. Morse, D. E., and Morse, A. N. C., 1976, Dual control of the tryptophan operon is mediated by both tryptophanyl-tRNA synthetase and the repressor, J. Mol. Biol. 103: 209 – 226.PubMedGoogle Scholar
  71. Nieuwkoop, A. J., Boylan, S. A., and Bender, R. A., 1984, Regulation of hutUHoperon expression by the catabolite gene activator protein—cyclic AMP complex in Klebsiella aerogenes, J. Bacteriol. 159: 934 – 939.PubMedGoogle Scholar
  72. Nomura, M., Morgan, E. A., and Jaskunas, S. R., 1977, Genetics of bacterial ribosomes, Annu. Rev. Genet. 11: 297 – 347.PubMedGoogle Scholar
  73. Nomura, M., Yates, J. L., Dean, D., and Post, L. E., 1980, Feedback regulation of ribosomal protein gene expression in Escherichia coli: Structural homology between ribosomal RNA and ribosomal protein mRNA, Proc. Natl. Acad. Sci. USA 77: 7084 – 7088.PubMedGoogle Scholar
  74. Ogata, R., and Gilbert, W., 1977, Contacts between the lacrepressor and thymines in the lacoperator, Proc. Natl. Acad. Sci. USA 74: 4973 – 4976.PubMedGoogle Scholar
  75. Ogata, R., and Gilbert, W., 1978, An amino-terminal fragment of lacrepressor binds specifically to lacoperator, Proc. Natl. Acad. Sci. USA 75: 5851 – 5854.PubMedGoogle Scholar
  76. Olins, P. O., and Nomura, M., 1981, Translational regulation by ribosomal protein S8 in Escherichia coli: Structural homology between rRNA binding site and feedback target on mRNA, Nucl. Acids Res. 9: 1757 – 1764.PubMedGoogle Scholar
  77. Olsson, M. O., and Gausing, K., 1980, Post-transcriptional control of coordinated ribosomal protein synthesis in Escherichia coli, Nature (Lond.) 283: 599 – 600.Google Scholar
  78. Oxender, D. L., Zurawski, G., and Yanofsky, C., 1979, Attenuation in the Escherichia colitryptophan operon: Role of RNA secondary structure involving the tryptophan codon region, Proc. Natl. Acad. Sci. USA 76: 5524 – 5528.PubMedGoogle Scholar
  79. Platt, T., Squires, C., and Yanofsky, C., 1976, Ribosomal-protected regions in the leader-trpEsequence of E. colitryptophan operon mRNA, J. Mol. Biol. 103: 411 – 420.PubMedGoogle Scholar
  80. Reznikoff, W. S., 1984a, Gene expression in microbes: The lac operon model system in: The Microbe 1984 (N. G. Carr and D. P. Kelly, eds.), pp. 195–218, Cambridge University Press, Cambridge.Google Scholar
  81. Reznikoff, W. S., 1984b, Some bacterial transposable elements: Their organizations, mechanisms of transpositions and roles in genome evolution, in: Prokaryotic Gene Expression (J. Beckwith, J. Davies, and J. Gallant, eds.), pp. 229–252, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  82. Reznikoff, W. S., and Abelson, J. N., 1978, The lacpromoter, in: The Operon( J. H. Miller and W. S. Reznikoff, eds.), pp. 221 – 244, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  83. Reznikoff, W. S., Maquat, L. E., Munson, L. E., Johnson, R. C., and Mandecki, W., 1982, The lacpromoter: Analysis of structural signals for transcription initiation and identification of a new sequence-specific event, in: Promoters Structure and Function( R. L. Rodriguez and M.J. Chamberlin, eds.), pp. 80 – 95, Praeger, New York.Google Scholar
  84. Reznikoff, W. S., Michels, C. A., Cooper, T. G., Silverstone, A. E., and Magasanik, B., 1974, Inhibition of lacZgene translation initiation in trp—lacfusion strains, J. Bacteriol. 117: 1231 – 1239.PubMedGoogle Scholar
  85. Rosenberg, M., and Court, D., 1979, Regulatory sequences involved in the promotion and termination of RNA transcription, Annu. Rev. Genet. 13: 319 – 353.PubMedGoogle Scholar
  86. Rosenberg, R., Court, D., Shimatake, H., Brady, C., and Wulff, D., 1978, Structure and function of an intercistronic regulatory region in bacteriophage lambda, in: The Operon( J. H. Miller and W. S. Reznikoff, eds.), pp. 345 – 372, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  87. Salstrom, J. S., and Szybalski, W., 1976, Phage lambda nutLmutans unable to utilize Nproduct for leftward transcriptions, Fed. Proc. 35: 1538.Google Scholar
  88. Salstrom, J. S., and Szybalski, W., 1978, Coliphage λnutL -: A unique class of mutants defective in the site of Nutilization for antitermination of leftward transcription, J. Mol. Biol. 124: 195 – 221.PubMedGoogle Scholar
  89. Sauer, R. T., Yocum, R. R., Doolittle, R. F., Lewis, M., and Pabo, C. O., 1982, Homology among DNA- binding proteins suggests use of a conserved super-secondary structure, Nature (Lond.) 298: 447 – 451.Google Scholar
  90. Scaife J., and Beckwith, J., 1967, Mutational alteration of the maximal level of lacoperon expression, Cold Spring Harbor Symp. Quant. Biol. 31: 403 – 408.Google Scholar
  91. Schmeissner, U., Court, D., McKenney, K., and Rosenberg, M., 1981, Positively activated transcription of\integrase gene initiates with UTP in vivo, Nature (Lond.) 292: 173 – 175.Google Scholar
  92. Schmitz, A., and Galas, D. J., 1979, The interaction of RNA polymerase and lacrepressor with the laccontrol region, Nucl. Acids Res. 6: 111 – 137.PubMedGoogle Scholar
  93. Shivakumar, A. G., Hahn, J., and Dubnau, D., 1979, Studies on the synthesis of plasmid-coded proteins and their control in Bacillus subtilisminicells, Plasmid 2: 279 – 289.PubMedGoogle Scholar
  94. Shorenstein, R., and Losick, R., 1973, Purification and properties of the sigma subunit of ribonucleic acid polymerase from vegetative Bacillus subtilis, J. Biol. Chem. 248: 6163 – 6169.PubMedGoogle Scholar
  95. Silverman, M., Zieg, J., Mandel, G., and Simon, M., 1981, Analysis of the functional components of the phase variation system, Cold Spring Harbor Symp. Quant. Biol. 45: 17 – 26.PubMedGoogle Scholar
  96. Silverman, M., and Simon, M., 1980, Phase variation: Genetic analysis of switching mutants, Cell 19: 845 – 854.PubMedGoogle Scholar
  97. Simons, R. W., and Kleckner, N., 1983, Translational control of IS10 transposition, Cell 34: 683 – 691.PubMedGoogle Scholar
  98. Talkington, C., and Pero, J., 1979, Distinctive nucleotide sequences of promoters recognized by RNA polymerase containing a phage-coded ”σ-like“ protein, Proc. Natl. Acad. Sci. USA 76: 5465 – 5469.PubMedGoogle Scholar
  99. Taylor, K., Hradecna, Z., and Szybalski, W., 1967, A symmetric distribution of the transcribing regions on the complementary strands of coliphage X DNA, Proc. Natl. Acad. Sci. USA 57: 1618 – 1625.PubMedGoogle Scholar
  100. Ullman, A., and Danchin, A., 1983. Role of cyclic AMP in bacteria, Adv. Cyclic Nucleotide Res. 15: 1 – 53.Google Scholar
  101. von Wilcken-Bergmann, B., and Miiller-Hill, B., 1982, Sequence of galRgene indicates a common evolutionary origin of lacand galrepressor in Escherichia coli, Proc. Natl. Acad. Sci. USA 79: 2427 – 2431.Google Scholar
  102. Weber, K., and Geisler, N., 1978, lacRepressor fragments produced in vivoand in vitro: An approach to the understanding of the interaction of repressor and DNA, in: The Operon(J. H. Miller and W. S. Reznikoff, eds.), pp. 155–176, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  103. Wiggs, J. L., Gilman, M. Z., and Chamberlin, M. J., 1981, Heterogeneity of RNA polymerase in Bacillus subtilis: Evidence for an additional a factor in vegetative cells, Proc. Natl. Acad. Sci. USA 78: 2762 – 2766.PubMedGoogle Scholar
  104. Yanofsky, C., 1976, Control sites in the tryptophan operon, in: Ninth Alfred Benson Symposium: Control of Ribosome Synthesis(N. C. Kjeldgaard and O. MaalØe, eds.), pp. 149 – 160, Munksgaard, Copenhagen.Google Scholar
  105. Yanofsky, C., 1981, Attenuation in the control of expression of bacterial operons, Nature (Lond.) 289: 751 – 758.Google Scholar
  106. Yates J. L., Arfsten, A. E., and Nomura, M., 1980, In vitroexpression of Escherichia coliribosomal protein genes: Autogenous inhibition of translation, Proc. Natl. Acad. Sci. USA 77: 1837 – 1841.Google Scholar
  107. Yates, J. L., and Nomura, M., 1980, E. coliribosomal protein L4 is a feedback regulatory protein, Cell 21: 517 – 522.Google Scholar
  108. Yates, J. L., and Nomura, M., 1981, Feedback regulation of ribosomal protein synthesis in E. coli: Localization of the mRNA target sites for repressor action of ribosomal protein L1, Cell 24: 243 – 249.PubMedGoogle Scholar
  109. Yu, X.-M., Munson, L., and Reznikoff, W. S., 1984, Molecular cloning and sequence analysis of trp-lacfusion deletions, J. Mol. Biol. 172: 355 – 362.PubMedGoogle Scholar
  110. Yu, X.-M., and Reznikoff, W. S., 1985, Deletion analysis of the Escherichia colilactose promoter P2, Nucl. Acids Res. 13: 2457 – 2468.PubMedGoogle Scholar
  111. Yin, J. C.-P., Krebs, M. P., and Reznikoff, W. S., 1988, The effect of dammethylation on Tn5 transposition, J. Mol. Biol. 199: 35 – 46.PubMedGoogle Scholar
  112. Zengel, J. M., Mueckl, D., and Lindahl, L., 1980, Protein L4 of the E. coliribosome regulates an eleven gene r protein operon, Cell 21: 523 – 535.PubMedGoogle Scholar
  113. Zieg, J., Hilmen, M., and Simon, M., 1978a, Regulation of gene expression by site-specific inversion, Cell 15: 237–244.Google Scholar
  114. Zieg, J., Silverman, M., Hilmen, M., and Simon, M., 1978b, The mechanism of phase variation in: The Operon (J. H. Miller and W. S. Reznikoff, eds.), pp. 411–423, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  115. Zieg, J., and Simon, M., 1980, Analysis of the nucleotide sequence of an invertible controlling element, Proc. Natl. Acad. Sci. USA 77: 4196 – 4200.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • William S. Reznikoff
    • 1
  1. 1.Department of Biochemistry, College of Agricultural and Life SciencesUniversity of WisconsinMadisonUSA

Personalised recommendations