Growth and Survival of Bacteria

  • Edwin A. Dawes
Part of the Bacteria in Nature book series (BANA, volume 3)

Abstract

The survival of a bacterium in its natural habitat depends on its ability to grow at a rate sufficient to balance death caused by starvation and other natural causes such as temperature, pH, and osmotic fluctuations, as well as predation and parasitism. In discussing survival under extreme conditions, Shilo (1979) has drawn attention to the difference between (1) stable ecosystems (exemplified by the continuous high temperatures in thermal springs, continuous high salinity as in the Dead Sea, and continuous high hydrostatic pressure typical of the ocean depths), which are inhabited by organisms with narrow adaptations; and (2) fluctuating ecosystems (typified by marshes, swamps, and shallow lakes with pronounced diurnal fluctuations of physical and chemical parameters) that harbor organisms with a much greater versatility of response.

Keywords

Carbohydrate Proline Assimilation Pyruvate Lactobacillus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad, Z. I., Alden, J. R., and Montague, M. D., 1980, The occurrence of trehalose in Micrococcusspecies, J. Gen. Microbiol. 121: 483 – 486.Google Scholar
  2. Allen, M. B. 1953, The thermophilic aerobe spore forming bacteria, Bacteriol. Rev. 17: 125 – 173.PubMedGoogle Scholar
  3. Allen, M. M., and Hutchison, F., 1980, Nitrogen limitation and recovery in the Cyanobacterium Aphanocapsa6308, Arch. Microbiol. 128: 1 – 7.Google Scholar
  4. Alton, T. H., and Koch, A. L., 1974, Unused protein synthetic capacity of Escherichia coligrown in phosphate- limited chemostats, J. Mol. Biol. 86: 1 – 9.PubMedGoogle Scholar
  5. Antoine, A. D., and Tepper, B. S., 1969, Characterization of glycogens from Mycobacteria, Arch. Biochem. Biophys. 134: 207 – 213.PubMedGoogle Scholar
  6. Atkinson, D. E., 1968, The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers, Biochemistry 7: 4030 – 4034.PubMedGoogle Scholar
  7. Atkinson, D. E., 1977, Cellular Energy Metabolism and Its Regulation, Academic, New York.Google Scholar
  8. Ball, W. J., and Atkinson, D. E., 1975, Adenylate energy charge in Saccharomyces cerevisiaeduring starvation, J. Bacteriol. 121: 975 – 982.PubMedGoogle Scholar
  9. Baltscheffsky, H., and Von Stedingk, L.-V., 1966, Bacterial photophosphorylation in the absence of added nucleotide. A second intermediate stage of energy transfer in light-induced formation of ATP, Biochem. Biophys. Res. Commun. 22: 722 – 728.PubMedGoogle Scholar
  10. Baltscheffsky, M., 1969, Energy conversion-linked changes of carotenoid absorbance in Rhodospirillum rubrumchromatophores, Arch. Biochem. Biophys. 130: 646 – 652.PubMedGoogle Scholar
  11. Barner, H. D., and Cohen, S. S., 1956, Synchronization of division of a thymineless mutant of Escherichia coli, J. Bacteriol. 72: 115 – 123.PubMedGoogle Scholar
  12. Belyaev, S. S., 1967, Distribution of the Caulobactergroup of bacteria in the Volga-Don reservoirs, Mikrobiologiia 36: 157 – 162.Google Scholar
  13. Belyaev, S. S., 1968a, Methods for the enumeration and isolation of Caulobacter, Mikrobiologiia 37:925–929.Google Scholar
  14. Belyaev, S. S., 1968b, Caulobacter in soils and some reservoirs of the USSR, Vestn. Mosk. Univ. 6:98–105.Google Scholar
  15. Bentley, C. M., and Dawes, E. A., 1974, The energy-yielding reactions of Peptococcus prevotii, their behaviour on starvation and the role and regulation of threonine dehydratase, Arch. Microbiol. 100: 363 – 387.PubMedGoogle Scholar
  16. Beudeker, R. F., Kerver, J. W. M., and Kuenen, J. G., 1981, Occurrence, structure and function of intracellular polyglucose in the obligate chemolithotroph Thiobacillus neapolitanus, Arch. Microbiol. 129:221– 226.Google Scholar
  17. Binnie, B., Dawes, E. A., and Holms, W. H., 1960, Metabolism of Sarcina lutea. IV. Patterns of oxidative assimilation, Biochim. Biophys. Acta40: 237 – 251.PubMedGoogle Scholar
  18. Bitton, G., and Marshall, K. C., 1980, Adsorption of Microorganisms to Surfaces, Wiley, New York.Google Scholar
  19. Black, S. H., and Gerhardt, P., 1962, Permeability of bacterial spores. IV. Water content, uptake and distribution, J. Bacteriol. 83: 960 – 967.PubMedGoogle Scholar
  20. Blanchard, D. C., and Syzdek, L. D., 1970, Mechanism for the water-to-air transfer and concentration of bacteria, Science 170: 626 – 628.PubMedGoogle Scholar
  21. Blaylock, B. A., and Nason, A., 1963, Electron transport systems of the chemoautotroph Ferrobacillus ferrooxidans, J. Biol. Chem. 238: 3453 – 3462.PubMedGoogle Scholar
  22. Boonstra, J., and Konings, W. N., 1977, Generation of an electrochemical proton gradient by nitrate respiration in membrane vesicles from anaerobically grown Escherichia coli, Eur. Biochem. 78: 361 – 368.Google Scholar
  23. Boonstra, J., Downie, J. A., and Konings, W., 1978, Energy supply for active transport in anaerobically grown Escherichia coli, J. Bacteriol. 136: 844 – 853.PubMedGoogle Scholar
  24. Booth, I. R., Mitchell, W. J., and Hamilton, W. A., 1979, Quantitative analysis of proton-linked transport systems. The lactose permease of Escherichia coli, Biochem. J. 182: 687 – 696.PubMedGoogle Scholar
  25. Borowitzka, L. J., Demmerle, S., Mackay, M. A., and Norton, R. S. 1980, Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga, Science 210: 650 – 651.PubMedGoogle Scholar
  26. Boylen, C. W., 1973, Survival of Arthrobacter crystallopoietesduring prolonged periods of extreme desiccation, J. Bacteriol. 113: 33 – 57.Google Scholar
  27. Boylen, C. W., and Ensign, J. C., 1970a, Long-term starvation survival of rod and spherical cells of Arthrobacter crystallopoietes, J. Bacteriol. 103:569–577.Google Scholar
  28. Boylen, C. W., and Ensign, J. C., 1970b, Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of Arthrobacter crystallopoietes, J. Bacteriol. 103:578–587.Google Scholar
  29. Boylen, C. W., and Mulks, M. H., 1978, The survival of coryneform bacteria during periods of prolonged nutrient starvation, J. Gen. Microbiol. 105: 323 – 334.Google Scholar
  30. Brana, A. F., Manzanal, M. B., and Hardisson, C., 1980, Occurrence of polysaccharide granules in sporulating hyphae of Streptomyces viridochromogenes, J. Bacteriol. 144: 1139 – 1142.PubMedGoogle Scholar
  31. Brandl, H., Gross, R. A., Lenz, R. W., and Fuller, R. C., 1988, Pseudomonas oleovoransas a source of poly(β-hydroxyalkanoates) for potential applications as biodegradable polyesters, Appl. Environ. Microbiol. 54: 1977 – 1982.Google Scholar
  32. Braunegg, G., and Korneti, L., 1984, Pseudomonas 2F: Kinetics of growth and accumulation of poly- D (–)-3- hydroxybutyric acid (Poly-HB), Biotechnol. Lett. 6: 825 – 829.Google Scholar
  33. Breuil, C. and Patel, G. B., 1980a, Composition of Methanospirillum hungatii GP1 during growth on different media, Can. J. Microbiol. 26:577–582.Google Scholar
  34. Breuil, C., and Patel, G. B., 1980b, Viability and depletion of cell constituents of Methanospirillum hungatii GP1 during starvation, Can. J. Microbiol. 26:887–891.Google Scholar
  35. Breznak, J. A., Potrikus, C. J., Pfennig, N., and Ensign, J. C., 1978, Viability and endogenous substrates used during starvation. Survival of Rhodospirillum rubrum, J. Bacteriol. 134: 381 – 388.PubMedGoogle Scholar
  36. Brock, T. D., 1971, Microbial growth rates in nature, Bacteriol. Rev. 35: 39 – 58.PubMedGoogle Scholar
  37. Brock, T. D., 1978, Thermophilic Micro-organisms and Life at High Temperatures, Springer-Verlag, New York.Google Scholar
  38. Brookes, P. C., Tate, K. R., and Jenkinson, D. S., 1983, The adenylate energy charge of the soil microbial biomass, Soil Biol. Biochem. 15: 9 – 16.Google Scholar
  39. Brown, A. D., 1976, Microbial water stress, Bacteriol. Rev. 40: 803 – 846.PubMedGoogle Scholar
  40. Brown, A. D., 1979, Physiological problems of water stress, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 65 – 81, Verlag Chemie, Berlin.Google Scholar
  41. Brown, C. M., and Stanley, S. O., 1972, Environment-mediated changes in the cellular content of the “pool” constituents and their associated changes in cell physiology, J. Appl. Chem. Biotechnol. 22: 363 – 389.Google Scholar
  42. Brown, D. E., 1970, Aeration in the submerged culture of micro-organisms, in: Methods in Microbiology, Vol. 2 ( J. R. Norris and D. W. Ribbons, eds.), pp. 125 – 174, Academic, New York.Google Scholar
  43. Brown, R. G., Lindberg, B., and Laishley, E. J., 1975a, Characterization of two reserve glucans from Clostridium pasteurianum, Can. J. Microbiol. 21:1136–1138.Google Scholar
  44. Brown, R. G., Lindberg, B., and Cheng, K.-J., 1975b, Characterization of a reserve glucan from Megasphaera elsdenii, Can. J. Microbiol. 21:1657–1659.Google Scholar
  45. Bulen, W. A., Le Comte, J. R., and Bales, H. E., 1963, Short-term N215 incorporation by Azotobacter, J. Bacteriol. 85: 666 – 670.PubMedGoogle Scholar
  46. Bull, A. T., and Brown, C. M., 1979, Continuous culture applications to microbial biochemistry, in: International Review of Biochemistry Microbial Biochemistry, Vol. 21 ( J. R. Quayle, ed.), pp. 177 – 226, University Park Press, Baltimore.Google Scholar
  47. Burleigh, I. G., and Dawes, E. A., 1967, Studies on the endogenous metabolism and senescence of starved Sarcina lutea, Biochem. J. 102: 236 – 250.PubMedGoogle Scholar
  48. Burns, R. G., 1983, Extracellular enzyme-substrate interactions in soil, in: Microbes in Their Natural Environment( J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 249 – 298, Cambridge University Press, London.Google Scholar
  49. Cagen, L. M., and Friedmann, H. C., 1972, Enzymatic phosphorylation of serine, J. Biol. Chem. 247: 3382 – 3392.PubMedGoogle Scholar
  50. Calcott, P. H., 1981, Continuous Culture of Cells, CRC Press, Boca Raton, Florida.Google Scholar
  51. Campbell, A., 1957, Sychronization of cell division, Bacteriol. Rev. 21: 263 – 272.PubMedGoogle Scholar
  52. Canale-Parola, E., 1970, Biology of the sugar-fermenting Sarcinae, Bacteriol. Rev. 34: 82 – 97.PubMedGoogle Scholar
  53. Carter, I. S., and Dawes, E. A., 1979, Effect of oxygen concentration and growth rate on glucose metabolism, poly-β-hydroxybutyrate synthesis and respiration of Azotobacter beijerinckii, J. Gen. Microbiol 110:393– 400.Google Scholar
  54. Cashel, M., 1975, Regulation of bacterial ppGpp and pppGpp, Annu. Rev. Microbiol. 29: 301 – 318.PubMedGoogle Scholar
  55. Chapman, A. G., Fall, L., and Atkinson, D. E., 1971, Adenylate energy charge in Escherichia coliduring growth and starvation, J. Bacteriol. 108: 1072 – 1086.PubMedGoogle Scholar
  56. Chapman, S. J., and Gray, T. R. G., 1981, Endogenous metabolism and macromolecular composition of Arthrobacter globiformis, Soil Biol. Biochem. 13: 11 – 18.Google Scholar
  57. Cheng, K.-J., Hironaka, R., Roberts, D. W. A., and Costerton, J. W., 1973, Cytoplasmic glycogen inclusions in cells of anaerobic gram-negative rumen bacteria, Can. J. Microbiol. 19: 1501 – 1506.PubMedGoogle Scholar
  58. Cheng, K.-J., Brown, R. G., and Costerton, J. W., 1977, Characterization of a cytoplasmic reserve glucan from Ruminococcus albus, Appl. Environ. Microbiol. 33: 718 – 724.PubMedGoogle Scholar
  59. Christian, J. H. B., and Scott, W. J., 1953, Water relations of salmonellae at 30°C, Aust. J. Biol. Sci. 6: 565 – 573.PubMedGoogle Scholar
  60. Clark, B., and Holms, W. H., 1976, Control of sequential utilization of glucose and fructose by Escherichia coli, J. Gen. Microbiol. 95: 191 – 201.Google Scholar
  61. Clarke, P. H., and Ornston, L. N., 1975, Metabolic pathways and regulation, in: Genetics and Biochemistry of Pseudomonas( P. H. Clarke and M. H. Richmond, eds.), pp. 191 – 340, Wiley, London.Google Scholar
  62. Clarke, P. H., Houldsworth, M. A., and Lilly, M. D., 1968, Catabolite repression and the induction of amidase synthesis by Pseudomonas aeruginosa8602 in continuous culture, J. Gen. Microbiol. 51: 225 – 234.PubMedGoogle Scholar
  63. Clayson, D. H. F., and Blood, R. M., 1957, Food perishability: The determination of the vulnerability of food surfaces to bacterial infection, J. Sci. Food Agric.8: 404 – 414.Google Scholar
  64. Cobley, J. G., 1984, The maintenance of pH gradients in acidophilic and alkalophilic bacteria: Gibbs-Donnan equilibrium calculations, in: Microbial Chemoautotrophy( W. R. Strohl and O. H. Tuovinen, eds.), pp. 121 – 132, Ohio State University Press, Columbus.Google Scholar
  65. Coffman, R. L., Norris, T. E., and Koch, A. L., 1971, Chain elongation rate of messenger and polypeptides in slowly growing Escherichia coli, J. Mol. Biol. 60: 1 – 19.PubMedGoogle Scholar
  66. Cohen, S. S., and Barner, H. D., 1954, Studies on unbalanced growth in Escherichia coli, Proc. Natl. Acad. Sci. USA 40: 885 – 893.PubMedGoogle Scholar
  67. Cornibert, J., and Marchessault, R. H., 1972, Physical properties of poly-β-hydroxybutyrate. IV. Conformational analysis and crystalline structure, J. Mol. Biol. 71: 735 – 756.PubMedGoogle Scholar
  68. Couperwhite, I., and McCallum, M. F., 1974, The influence of EDTA on the composition of alginate synthesized by Azotobacter vinelandii, Arch. Microbiol. 97: 73 – 80.Google Scholar
  69. Cox, G. B., and Gibson, F., 1974, Studies on electron transport and energy-linked reactions using mutants of Escherichia coli, Biochim. Biophys. Acta 346: 1 – 25.PubMedGoogle Scholar
  70. Cox, J. C., Nicolls, D. G., and Ingledew, W. J., 1979, Transmembranal electrical potential and transmembrane pH gradient in the acidophile Thiobacillus ferrooxidans, Biochem. J. 178: 195 – 200.PubMedGoogle Scholar
  71. Cozzone, A. J., 1981, How do bacteria synthesize proteins during amino acid starvation?, Trends Biochem. Sci. 6: 68 – 70.Google Scholar
  72. Csonka, L. N., 1981, Proline over-production results in enhanced osmotolerance in Salmonella typhimurium, Mol. Gen. Genet. 182: 82 – 86.PubMedGoogle Scholar
  73. Dagley, S., and Sykes, J., 1957, Effect of starvation upon the constitution of bacteria, Nature (Lond.) 179: 1249 – 1250.Google Scholar
  74. Dahlback, B., Hermansson, M., Kjelleberg, S., and Norkrans, B., 1981, The hydrophobicity of bacteria—An important factor for their initial adhesion at the air-water interface, Arch. Microbiol. 128: 267 – 270.PubMedGoogle Scholar
  75. Dalton, H., and Postgate, J. R., 1969a, Effect of oxygen on growth of Azotobacter chroococcum in batch and continuous cultures, J. Gen. Microbiol. 54:463–473.Google Scholar
  76. Dalton, H., and Postgate, J.R., 1969b, Growth and physiology of Azotobacter chroococcum in continuous culture, J. Gen. Microbiol. 56:307–319.Google Scholar
  77. Davis, W. M., and White, D. C., 1980, Fluorometric determination of adenosine nucleotide derivatives as measures of the microfouling, detrital and sedimentary microbial biomass and physiological status, Appl. Environ. Microbiol. 40: 539 – 548.PubMedGoogle Scholar
  78. Dawes, E. A., 1976, Endogenous metabolism and the survival of starved prokaryotes, in: The Survival of Vegetative Microbes( T. R. G. Gray and J. R. Postgate, eds.), pp. 19 – 53, Cambridge University Press, London.Google Scholar
  79. Dawes, E. A., 1981, Carbon Metabolism, in: Continuous Culture of Cells, Vol. II ( P. H. Calcott, ed.), pp. 1 – 38, CRC Press, Boca Raton, Florida.Google Scholar
  80. Dawes, E. A., 1982, Class I reactions: Supply of carbon skeletons, in: Biochemistry of Bacterial Growth( J. Mandelstam, K. McQuillen, and I. Dawes, eds.), pp. 125 – 158, Blackwell, Oxford.Google Scholar
  81. Dawes, E. A., 1985, Starvation, survival and energy reserves, in: Bacteria in their Natural Environments( M. Fletcher and G. D. Floodgate, eds), pp. 43 – 79, Academic, London.Google Scholar
  82. Dawes, E. A., and Holms, W. H., 1958, Metabolism of Sarcina lutea. III. Endogenous metabolism, Biochim. Biophys. Acta 30: 278 – 293.PubMedGoogle Scholar
  83. Dawes, E. A., and Large, P. J., 1970, Effect of starvation on the viability and cellular constituents of Zymomonas anaerobiaand Zymomonas mobilis, J. Gen. Microbiol. 60: 31 – 42.PubMedGoogle Scholar
  84. Dawes, E. A., and Ribbons, D. W., 1962, The endogenous metabolism of micro-organisms, Annu. Rev. Microbiol. 16: 241 – 264.PubMedGoogle Scholar
  85. Dawes, E. A., and Ribbons, D. W., 1964, Some aspects of the endogenous metabolism of bacteria, Bacteriol. Rev. 28: 126 – 149.PubMedGoogle Scholar
  86. Dawes, E. A, and Senior, P. J., 1973, The role and regulation of energy reserve polymers in micro-organisms, Adv. Microbial Physiol. 10: 135 – 266.Google Scholar
  87. Dawes, E. A., Midgley, M., and Whiting, P. H., 1976, Control of transport systems for glucose, gluconate and 2-oxogluconate, and of glucose metabolism in Pseudomonas aeruginosa, in: Continuous Culture, Vol. VI: Applications and New Fields( A. C. R. Dean, D. C. Ellwood, C. G. T. Evans, and J. Melling, eds.), pp. 195 – 207, Ellis Horwood, Chichester.Google Scholar
  88. Dawson, M. P., Humphrey, B. A., and Marshall, K. C., 1981, Adhesion: A tactic in the survival strategy of a marine Vibrioduring starvation, Curr. Microbiol. 6: 195 – 199.Google Scholar
  89. Deinema, M. H., Habets, L. H. A., Scholten, J., Turkstra, E., and Webers, H. A. A. M., 1980, The accumulation of polyphosphate in Acinetobacterspp., FEMS Lett. 9: 275 – 279.Google Scholar
  90. DeRosa, M., Gambacorta, A., and Bu’Lock, J. D., 1975, Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius, J. Gen. Microbiol. 86: 156 – 164.Google Scholar
  91. DeSmet, M., Eggink, G., Witholt, B., Kingma, J., and Wynberg, H., 1983, Characterization of intracellular inclusions formed by Pseudomonas oleovoransduring growth on octane, J. Bacteriol. 154: 870 – 878.Google Scholar
  92. Dietzler, D. N., Lais, C. J., and Leckie, M. P., 1974, Simultaneous increases of the adenylate energy charge and the rate of glycogen synthesis in nitrogen starved Escherichia coliW4597(K), Arch. Biochem. Biophys. 160: 14 – 25.PubMedGoogle Scholar
  93. Dietzler, D. N., Leckie, M. P., Lais, C. J., Henry, D. A., Rothert, J. H., and Ferguson, R. M., 1979a, Periodic inventory review as a strategy for survival in Escherichia coli, J. Biol. Chem. 254:8288–8294.Google Scholar
  94. Dietzler, D. M., Leckie, M. P., Lewis, J. W., Porter, S. E., Taxman, T. L., and Lais, C. J., 1919b, Evidence for new factors in the coordinate regulation of energy metabolism in Escherichia coli, J. Biol. Chem. 254: 8295–8307.Google Scholar
  95. Dietzler, D N., Leckie, M. P., Magnani, J. L, Sughrue, M. J., Bergstein, P. E., and Sternheim, W. L., 1979 c, Contribution of cyclic adenosine 3’: 5’ -monophosphate to the regulation of bacterial glycogen synthesis in vivo, J. Biol. Chem. 265:8308–8317.Google Scholar
  96. Dietzler, D. N., Leckie, M. P., Sternheim, W. L., Ungar, J. M., Crimmins, D. L., and Lewis, J. W., 1979d, Regulation of glycogen synthesis and glucose utilization in Escherichia coli during maintenance of the energy charge, J. Biol. Chem. 254:8276–8287.Google Scholar
  97. Dijkhuizen, L., van der Werf, B., and Harder, W., 1980, Metabolic regulation in Pseudomonas oxalaticusOX1. Autotrophic and heterotrophic growth on mixed substrates, Arch. Microbiol. 124: 261 – 268.Google Scholar
  98. Di Persio, J. R., and Deal, S. J., 1974, Identification of intracellular polysaccharide granules in thin sections of Nocardia asteroides, J. Gen. Microbiol. 83: 349 – 358.Google Scholar
  99. Di Persio, J. R., Mattingly, S. J., Higgins, M. L., and Shockman, G. D., 1974, Measurement of intracellular iodophilic polysaccharide in two cariogenic strains of Streptococcus mutansby cytochemical and chemical methods, Infect. Immun. 10: 597 – 604.Google Scholar
  100. Dirheimer, G., and Ebel, J. P., 1965, Caractérisation d’une polyphosphate-AMP-phosphotransferase dans Corynebacterium xerosis, Compt. Rendu. 260: 3787 – 3790.Google Scholar
  101. Dirheimer, G., and Ebel, J. P., 1968, Purification and properties of a polyphosphate: glucose (and glucosamine) 6-phosphotransferase from Corynebacterium xerosis103 1442, Bull. Soc. Chim. Biol. 50: 1933 – 1947.PubMedGoogle Scholar
  102. Doetsch, R. N., Howard, B. H., Mann, S. O., and Oxford, A. E., 1957, Physiological factors in the production of an iodophilic polysaccharide from pentose by a sheep rumen bacteria, J. Gen. Microbiol. 16: 156 – 168.Google Scholar
  103. Doi, Y., Kunioka, M., Nakamura, Y., and Soga, K., 1986, Biosynthesis of polyesters by Alcaligenes eutrophus: incorporation of 13C-labelled acetate and propionate, J. Chem. Soc. Chem. Commun. 23: 1696 – 1697.Google Scholar
  104. Doi, Y., Tamaki, A., Kunioka, M., and Soga, K., 1988, Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophusfrom butyric and pentanoic acids, Appl. Microbiol. Biotech. 28: 330 – 334.Google Scholar
  105. Doudoroff, M., and Stanier, R. Y., 1959, Role of poly-β-hydroxybutyric acid in the assimilation of organic carbon by bacteria, Nature (Lond.) 183: 1440 – 1442.Google Scholar
  106. Dow, C. S., and Whittenbury, R., 1980, Prokaryotic form and function, in: Contemporary Microbial Ecology( D. C. Ellwood, J. N., Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 391 – 417, Academic, New York.Google Scholar
  107. Dow, C. S., Whittenbury, R., and Carr, N. G., 1983, The “shut down” or “growth precursor” cell—An adaptation for survival in a potentially hostile environment, in: Microbes in their Natural Environments( J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 187 – 247, Cambridge University Press, London.Google Scholar
  108. Drozd, J., and Postgate, J. R., 1970, Effects of oxygen on acetylene reduction, cytochrome content and respiratory activity of Azotobacter chroococcum, J. Gen. Microbiol. 63: 63 – 73.PubMedGoogle Scholar
  109. Duxbury, T., Gray, T. R. G., and Sharples, G. P., 1977, Structure and chemistry of walls of rods, cocci and cystites of Arthrobacter globiformis. J. Gen. Microbiol. 103: 91 – 99.Google Scholar
  110. Eisenberg, R. C., Butters, S. J., Quay, S. C., and Friedman, S. B., 1974, Glucose uptake and phosphorylation in Pseudomonas fluorescens, J. Bacteriol. 120: 147 – 153.PubMedGoogle Scholar
  111. Eisenberg, R. J., 1973, Induction of unbalanced growth and death of Streptococcus sanguisby oxygen, J. Bacteriol. 116: 183 – 191.PubMedGoogle Scholar
  112. Elbein, A. D., 1974, The metabolism of α,α-trehalose, Adv. Carbohydr. Chem. Biochem. 30: 227 – 256.PubMedGoogle Scholar
  113. Ellar, D. J., 1978a, Membrane fluidity in micro-organisms, in: Companion to Microbiology (A. T. Bull and P. M. Meadow, eds.), pp. 265–295, Longman, London.Google Scholar
  114. Ellar, D. J., 1978b, Spore specific structures and their function, in: Relations between Structure and Function in the Prokaryotic Cell (R. Y. Stanier, H. J. Rogers, and B. J. Ward, eds.), pp. 295–325, Cambridge University Press, London.Google Scholar
  115. Ellar, D., Lundgren, D. G., Okamura, K., and Marchessault, R. H., 1968, Morphology of poly-β-hydroxybutyrate granules, J. Mol. Biol. 35: 489 – 502.PubMedGoogle Scholar
  116. Ellwood, D. C., Melling, J., and Rutter, P. R., 1979, Adhesion of Microorganisms to Surfaces, Academic, London.Google Scholar
  117. Ellwood, D. C., Keevil, C. W., Marsh, P. D., Brown, C. M., and Wardell, J. N., 1982, Surface-associated growth, Philos. Trans..R. Soc. Lond. [Biol.] 297: 517 – 532.Google Scholar
  118. Farrell, J., and Rose, A. H., 1967, Temperature effects on microorganisms, Annu. Rev. Microbiol. 21: 101 – 120.PubMedGoogle Scholar
  119. Findlay, R. H., and White, D. C. 1983, Polymeric beta-hydroxyalkanoates from environmental samples and Bacillus megaterium, Appl. Environ. Microbiol. 45: 71 – 78.PubMedGoogle Scholar
  120. Findlay, R. H., Pollard, P. C., Moriarty, D. J. W., and White, D. C., 1985, Quantitative determination of microbial activity and community nutritional status in estuarine sediments: Evidence for a disturbance artifact, Can. J. Microbiol. 31: 493 – 498.PubMedGoogle Scholar
  121. Fletcher, M. M., 1979, The aquatic environment, in: Microbial Ecology—A Conceptual Approach( J. M. Lynch and N. J. Poole, eds.), pp. 92 – 114, Black well, London.Google Scholar
  122. Fletcher, M., and Marshall, K. C., 1982, Are solid surfaces of ecological significance to aquatic bacteria?, Adv. Microb. Ecol. 6: 199 – 236.Google Scholar
  123. Forrest, W. W., and Walker, D. J., 1963, Calorimetric measurements of energy of maintenance in Streptococcus faecalis, Biochem. Biophys. Res. Commun. 13: 217 – 222.Google Scholar
  124. Forrest, W. W., and Walker, D. J., 1965, Synthesis of reserve materials for endogenous metabolism in Streptococcus faecalis, J. Bacteriol. 89: 1448 – 1452.PubMedGoogle Scholar
  125. Foulds, I. J., and Carr, N. G., 1977, A proteolytic enzyme degrading phycocyanin in the cyanobacterium Anabaena cylindrica, FEMS Lett. 2: 117 – 119.Google Scholar
  126. Friedman, S. M. (ed.), 1978, Biochemistry of Thermophily, Academic, New York.Google Scholar
  127. Fry, J. C., and Zia, T., 1982a, A method for estimating viability of aquatic bacteria by slide culture, J. Appl. Bacteriol. 53:189–198.Google Scholar
  128. Fry, J. C., and Zia, T., 1982b, Viability of heterotrophic bacteria in freshwater, J. Gen. Microbiol. 128:2841–2850.Google Scholar
  129. Fuhs, G. W., and Chen, M., 1975, Microbiological basis of phosphate removal in the activated sludge process for the treatment of waste water, Microbial Ecol. 2: 119 – 138.Google Scholar
  130. Fuller, R. C., and Brandl, H., 1988, Novel poly(β-hydroxyalkanoates) from photosynthetic and chemosynthetic bacteria, in: Abstracts, Biotech-88, Second Spanish Conference on Biotechnology, pp. 92–93, Barcelona.Google Scholar
  131. Gallant, J. A., 1979, Stringent control in E. coli, Annu. Rev. Genet. 13: 395 – 415.Google Scholar
  132. Garrod, D. R., and Ashworth, J. M., 1973, Development of the cellular slime mould Dictyostelium discoideum, Symp. Soc. Gen. Microbiol. 23: 407 – 435.Google Scholar
  133. Goldberg, A. L., 1971, A role of aminoacyl-(transfer) RNA in the regulation of protein breakdown in Escherichia coli, Proc. Natl. Acad. Sci. USA 68: 362 – 366.PubMedGoogle Scholar
  134. Gordon, A. S., Millero, F. J., and Gerchakov, S. M., 1982, Microcalorimetric measurements of glucose metabolism by marine bacterium Vibrio alginolyticus, Appl. Environ. Microbiol. 44: 1102 – 1109.PubMedGoogle Scholar
  135. Gottschal, J. D., 1986, Mixed substrate utilization by mixed cultures, in: Bacteria in Nature( J. S. Poindexter and E. R. Leadbetter, eds.), Vol. 2 pp. 261 – 292. Plenum, New York.Google Scholar
  136. Gould, G. W., 1977, Recent advances in the understanding of resistance and dormancy in bacterial spores, J. Appl. Bacteriol. 42: 297 – 309.PubMedGoogle Scholar
  137. Gould, G. W., and Dring, G. J., 1975, Heat resistance of bacterial endospores and concept of an expanded osmoregulatory cortex, Nature (Lond.) 258: 402 – 405.Google Scholar
  138. Gray, T. R. G., 1976, Survival of vegetative microbes in soil, in: The Survival of Vegetative Microbes( T. R. G. Gray and J. R. Postgate, eds.), pp. 327 – 364, Cambridge University Press, London.Google Scholar
  139. Gray, T. R. G., and Postgate, J. R. (eds.), 1976, The Survival of Vegetative Microbes, Cambridge University Press, London.Google Scholar
  140. Green, J. H., and Sadoff, H. L., 1965, Comparison of soluble reduced nicotinamide dinucleotide oxidases from cells and spores of Clostridium botulinum, J. Bacteriol. 89: 1499 – 1505.PubMedGoogle Scholar
  141. Greenwood, D. J., 1968, Measurement of microbial metabolism in soil, in: The Ecology of Soil Bacteria( T. R. G. Gray and D. Parkinson, eds.), pp. 138 – 157, Liverpool University Press, Liverpool.Google Scholar
  142. Griebel, R. J., Smith, Z., and Merrick, J. M., 1968, Metabolism of poly-beta-hydroxybutyrate. I. Purification, composition and properties of native poly-beta-hydroxybutyrate granules from Bacillus megaterium, Biochemistry 7: 3676 – 3681.PubMedGoogle Scholar
  143. Groat, R. G., Schultz, J., Zychlinsky, E., Bockman, A., and Matin, A., 1986, Specific gene expression at the onset of nutrient starvation in Escherichia coli and its role in starvation survival, in: Abstracts of the Annual Meeting of the American Society of Microbiology, Washington, D.C., p. 135 (abst. H-50).Google Scholar
  144. Guffanti, A. A., Blumenfeld, H., and Krulwich, T. A., 1981a, ATP Synthesis by an uncoupler-resistant mutant of Bacillus megaterium, J. Biol. Chem. 256:8416–8421.Google Scholar
  145. Guffanti, A. A., Bornstein, R. F., and Krulwich, T. A., 1981b, Oxidative phosphorylation by membrane vesicles from Bacillus alcalophilus, Biochim. Biophys. Acta 635:619–630.Google Scholar
  146. Gupta, M., and Carr, N. G., 1981, Enzyme activities related to Cyanophycin metabolism in heterocysts and vegetative cells of Anabaenaspp., J. Gen. Microbiol. 125: 17 – 23.Google Scholar
  147. Halvorson, H. O., 1962, The function and control of intracellular protein turnover in micro-organisms, in: Amino Acid Pools( J. T. Holden, ed.), pp. 646 – 654, Elsevier, Amsterdam.Google Scholar
  148. Hamilton, I. R., 1968, Synthesis and degradation of intracellular polyglucose in Streptococcus salivarius, Can. J. Microbiol. 14: 65 – 77.PubMedGoogle Scholar
  149. Hamilton, W. A., 1975, Energy coupling in microbial transport, Adv. Microb. Physiol. 12: 1 – 53.Google Scholar
  150. Hamilton, W. A., and Dawes, E. A., 1959, A diauxic effect with Pseudomonas aeruginosa, Biochem. J. 71: 25 P.Google Scholar
  151. Harder, W., and Dijkhuizen, L., 1982, Strategies of mixed substrate utilization in microorganisms, Philos. Trans. R. Soc. Lond. [Biol.] 297: 459 – 480.Google Scholar
  152. Harder, W., and Veldkamp, H., 1970, Competition of marine psychrophilic bacteria at low temperatures, Antonie van Leeuwenhoek 37: 51 – 63.Google Scholar
  153. Harder, W., Kuenen, J. G., and Matin, A., 1977, Microbial selection in continuous culture, J. Appl. Bacteriol. 43: 1 – 24.PubMedGoogle Scholar
  154. Harold, F. M., 1964, Enzymic and genetic control of polyphosphate accumulation in Aerobacter aerogenes, J. Gen. Microbiol. 35: 81 – 90.PubMedGoogle Scholar
  155. Harold, F. M., 1965, Regulatory mechanism in the metabolism of inorganic polyphosphate in Aerobacter aerogenes, Colloq. Int. CNRS (Paris) 124: 307 – 315.Google Scholar
  156. Harold, F. M., 1966, Inorganic polyphosphates in biology: Structure, metabolism and functions, Bacteriol. Rev. 30: 772 – 794.PubMedGoogle Scholar
  157. Harold, F. M., and Harold, R. L., 1965, Degradation of inorganic polyphosphates in mutants of Aerobacter aerogenes, J. Bacteriol. 89: 1262 – 1270.PubMedGoogle Scholar
  158. Harold, R. L., and Harold, F. M., 1963, Mutants of Aerobacter aerogenesblocked in the accumulation of inorganic polyphosphate, J. Gen. Microbiol. 31: 241 – 246.PubMedGoogle Scholar
  159. Harrison, A. P., 1960, The response of Bacterium lactis aerogeneswhen held at growth temperatures in the absence of nutrient: An analysis of survival curves, Proc. R. Soc. Lond. [Biol.] 152: 418 – 428.Google Scholar
  160. Harrison, A. P., Jr., and Lawrence, F. R., 1963, Phenotypic, genotypic and chemical changes in starving populations of Aerobacter aerogenes, J. Bacteriol. 85: 742 – 750.PubMedGoogle Scholar
  161. Haug, A., and Larsen, B., 1971, Biosynthesis of alginate. II. Polymannuronic acid C-5 epimerase from Azotobacter vinelandii(Lipman), Carbohydr. Res. 17: 297 – 308.PubMedGoogle Scholar
  162. Haywood, G. W., Anderson, A. J., Chu, L., and Dawes, E. A., 1988a, Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxylakanoate synthesizing organism Alcaligenes eutrophus, FEMS Microbiol. Lett. 52:91–96.Google Scholar
  163. Haywood, G. W., Anderson, A. J., Chu, L., and Dawes, E. A., 1988b, The role of NADH- and NADPH- linked acetoacetyl-CoA reductases in the poly-3-hydroxybutyrate synthesizing organism Alcaligenes eutrophus, FEMS Microbiol. Lett. 52:259–64.Google Scholar
  164. Haywood, G. W., Anderson, A. J., and Dawes, E. A., 1989, The importance of PHB-synthase substrate specificity in poly-hydroxylakanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol. Lett. 57: 1 – 6.Google Scholar
  165. Heinrich, M. R. (ed.), 1976, Extreme Environments: Mechanisms of Microbial Adaptation, Academic, New York.Google Scholar
  166. Herbert, D., 1961, The chemical composition of micro-organisms as a function of their environment, in: Microbial Reaction to Environment( G. G. Meynell and H. Gooder, eds.), pp. 391 – 416, Cambridge University Press, London.Google Scholar
  167. Herbert, D., Elsworth, R., and Telling, R. C., 1956, The continuous culture of bacteria: A theoretical and experimental study, J. Gen. Microbiol. 14: 601 – 622.PubMedGoogle Scholar
  168. Herron, J. S., King, J. D., and White, D. C., 1978, Recovery of poly-β-hydroxybutyrate from estuarine microflora, Appl. Environ. Microbiol. 35: 251 – 257.PubMedGoogle Scholar
  169. Hespell, R. B., Miozzari, G. F., and Rittenberg, S. C., 1975, Ribonucleic acid destruction and synthesis during intraperiplasmic growth of Bdellovibrio bacteriovorus, J. Bacteriol. 123: 481 – 491.PubMedGoogle Scholar
  170. Hill, S., 1971, Influence of oxygen concentration on colony type O Derxia-gummosagrown on nitrogen-free media, J. Gen. Microbiol. 67: 77$#x2013;83.Google Scholar
  171. Hill, S., and Postgate, J. R., 1969, Failure of putative nitrogen fixing bacteria to fix nitrogen, J. Gen. Microbiol. 58: 277 – 285.PubMedGoogle Scholar
  172. Hinshelwood, C. N., 1946, Chemical Kinetics of the Bacterial Cell, Oxford University Press, London.Google Scholar
  173. Hippe, H., 1967, Abbau und wiederverwertung von poly-beta-hydroxybuttersaure durch HydrogenomonasHI6, Arch. Microbiol. 56: 248 – 277.Google Scholar
  174. Hoffman-Ostenhof, O., and Weigert, W., 1952, Uber die mogliche funktion des polymeren metaphosphats als speicher energie-reichen phosphate in der hefe, Naturwissenschaften 39: 303 – 304.Google Scholar
  175. Holme, T., 1957, Continuous culture studies on glycogen synthesis in Escherichia coliB, Acta Chem. Scand. 11: 763 – 775.Google Scholar
  176. Holme, T., and Palmstierna, H., 1956, On the glycogen in Escherichia coliB; its synthesis and breakdown and its specific labelling with 14C, Acta Chem. Scand. [B] 10: 1557 – 1562.Google Scholar
  177. Holmes, P. A., 1985, Applications of PHB—a microbially produced biodegradable thermoplastic, Phys. Technol. 16: 32 – 36.Google Scholar
  178. Holms, W. H., and Bennet, P. M., 1971, Regulation of isocitrate dehydrogenase activity in Escherichia colion adaptation to acetate, J. Gen. Microbiol. 65: 57 – 68.PubMedGoogle Scholar
  179. Holms, W. H., Hamilton, I. D., and Robertson, A. G., 1972, The rate of turnover of the adenosine triphosphate pool of Escherichia coligrowing aerobically in simple defined media, Arch. Microbiol. 83: 95 – 109.Google Scholar
  180. Holt, S. C., Gauthier, J. J., and Tipper, D. J., 1975, Ultrastructural studies of sporulation in Bacillus sphaericus, J. Bacteriol. 122: 1322 – 1338.PubMedGoogle Scholar
  181. Horan, N. J., Midgley, M., and Dawes, E. A., 1978, Anaerobic transport of serine and 2-aminoisobutyric acid by Staphylococcus epidermis, J. Gen. Microbiol. 109: 119 – 126.PubMedGoogle Scholar
  182. Horan, N. J., Midgley, M., and Dawes, E. A., 1981, Effect of starvation on transport, membrane potential and survival of Staphylococcus epidermidisunder anaerobic conditions, J. Gen. Microbiol. 127: 223 – 230.PubMedGoogle Scholar
  183. Hsung, J. C., and Haug, A., 1975, Extracellular pH of Thermoplasma acidophila, Biochim. Biophys. Acta 389: 477 – 482.PubMedGoogle Scholar
  184. Humphrey, B., Kjelleberg, S., and Marshall, K. C., 1983, Responses of marine bacteria under starvation conditions at a solid-water interface, Appl. Environ. Microbiol. 45: 43 – 47.PubMedGoogle Scholar
  185. Hungate, R. E., 1963, Polysaccharide storage and growth efficiency in Ruminococcus albus, J. Bacteriol. 86: 848 – 854.PubMedGoogle Scholar
  186. Hunter, K., and Rose, A. H., 1972, Influence of growth temperature on the composition and physiology of micro-organisms, J. Appl. Chem. Biotechnol. 22: 527 – 540.Google Scholar
  187. Imae, Y., and Strominger, J. L., 1976, Relationship between cortex content and properties of Bacillus sphaericusspores, J. Bacteriol. 126: 907 – 913.PubMedGoogle Scholar
  188. Inniss, W. E., 1975, Interaction of temperature and psychrophilic micro-organisms, Annu. Rev. Microbiol. 29: 445 – 465.PubMedGoogle Scholar
  189. Ivler, D., 1965, Comparative metabolism of virulent and avirulent staphylococci, Ann. NY Acad. Sci. 128: 62 – 80.PubMedGoogle Scholar
  190. Jackson, F. A., and Dawes, E. A., 1976, Regulation of the tricarboxylic acid cycle and poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckiigrown under nitrogen or oxygen limitation, J. Gen. Microbiol. 97: 303 – 312.PubMedGoogle Scholar
  191. Jannasch, H. W., 1965, Eine notiz iiber die anreicherung von mikroorganismen im chemostaten, Zentralbl. Bakteriol. Hyg. [A]498 – 502.Google Scholar
  192. Jannasch, H. W., 1967, Enrichments of aquatic bacteria in continuous culture, Arch. Microbiol. 59: 165 – 173.Google Scholar
  193. Jannasch, H. W., 1979, Microbial ecology of aquatic low nutrient habitats, in Strategies of Microbial Life in Extreme Environments(M. Shilo, ed.), Dahlem Konferenzen Life Sciences Research Report 13, pp. 243 – 260, Verlag Chemie, Weinheim.Google Scholar
  194. Jannasch, H. W., and Mateles, R. I., 1974, Experimental bacterial ecology studied in continuous culture, Adv. Microb. Physiol. 11: 165 – 212.Google Scholar
  195. Jenkinson, D. S., and Ladd, J. N., 1981, Microbial biomass in soil: Measurement and turnover, in: Soil Biochemistry, Vol. V ( E. A. Paul and J. N. Ladd, eds.), pp. 415 – 471, Dekker, New York.Google Scholar
  196. Johnson, E. J., 1979, Thermophile genetics and the genetic determinants of thermophily, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 471 – 487, Verlag Chemie, Berlin.Google Scholar
  197. Jones, H. C., and Schmidt, J. M., 1973, Ultrastructural study of crossbands occurring in the stalks of Caulobacter crescentus, J. Bacteriol. 116: 466 – 470.PubMedGoogle Scholar
  198. Jones, K. L., and Rhodes-Roberts, M. E., 1981, The survival of marine bacteria under starvation conditions, J. Appl. Bacteriol. 50: 247 – 258.Google Scholar
  199. Kaltwasser, H., 1962, Die Rolle der Polyphosphate im Phosphatstoffwechsel eines Knallgazbacterium (Hydro- genomonasStamm 20), Arch. Microbiol. 41: 282 – 306.Google Scholar
  200. Karl, D. M., 1980, Cellular nucleotide measurements and applications in microbial ecology, Microbiol. Rev. 44: 739 – 796.PubMedGoogle Scholar
  201. Karl, D. M., 1986, Determination of in situmicrobial biomass, viability, metabolism, and growth, in: Bacteria in Nature, Vol. 2 ( J. S. Poindexter and E. R. Leadbetter, eds.), pp. 85 – 176, Plenum, New York.Google Scholar
  202. Kashket, E. R., 1982, Stoichiometry of the H+ -ATPase of growing and resting aerobic Escherichia coli, Biochemistry 21: 5534 – 5538.PubMedGoogle Scholar
  203. Keevil, C. W., Marsh, P. D., and Ellwood, D. C., 1984, Regulation of glucose metabolism in oral streptococci through independent pathways of glucose 6-phosphate and glucose 1-phosphate formation, J. Bacteriol. 157: 560 – 567.PubMedGoogle Scholar
  204. Kell, D. B., Ferguson, S. J., and John, P., 1978a, Measurement by a flow dialysis technique of the steady-state proton motive force in chromatophores from Rhodosprillum rubrum: Comparison with phosphorylation potential, Biochim. Biophys. Acta 502: 111 – 126.Google Scholar
  205. Kell, D. B., John, P., and Ferguson, S. J., 1978b, The proton motive force in phosphorylating membrane vesicles from Paracoccus denitrificans: Magnitude, sites of generation and comparison with the phosphorylation potential, Biochem. J. 174:257–266.Google Scholar
  206. Kjelleberg, S., Strenström, T. A., and Odham, G., 1979, Comparative study of different hydrophobic devices for sampling lipid surface films and adherent micro-organisms, Marine Biol. 53: 21 – 25.Google Scholar
  207. Kjelleberg, S., Humphrey, B. A., and Marshall, K. C., 1982, Effect of interfaces on small, starved marine bacteria, Appl. Environ. Microbiol. 43: 1166 – 1172.PubMedGoogle Scholar
  208. Knöll, H., 1965, Zur Biologie der Gärungssarcinen, Monatsber. Dtsch. Akad. Wiss. Berl. 7: 475 – 477.Google Scholar
  209. Knowles, C. J., 1977, Microbial metabolic regulation by adenine nucleotide pools, Symp. Soc. Gen. Microbiol. 27: 241 – 283.Google Scholar
  210. Koch, A. L., 1971, The adaptive responses of Escherichia colito a feast and famine existence, Adv. Microb. Physiol. 6: 147 – 217.PubMedGoogle Scholar
  211. Koch, A. L., 1976, How bacteria face depression, recession and derepression, Perspect. Biol. Med. 20: 44 – 63.PubMedGoogle Scholar
  212. Koch, A. L., 1979, Microbial growth in low concentrations of nutrients, in: Strategies in Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 261 – 279, Verlag Chemie, Berlin.Google Scholar
  213. Kominek, L. A., and Halvorson, H. O., 1965, Metabolism of poly-beta-hydroxybutyrate and acetoin in Bacillus cereus, J. Bacteriol. 90: 1251 – 1259.PubMedGoogle Scholar
  214. König, H., Skorko, R., Zillig, W., and Reiter, W. D., 1982, Glycogen in thermoacidophilic archaebacteria of the genera Sulfolobus, Thermoproteus, Desulfurococcusand Thermococcus, Arch. Microbiol. 132: 297 – 303.Google Scholar
  215. Konings, W. N., 1985, Generation of metabolic energy by end-product efflux, TIBS 10: 317 – 319.Google Scholar
  216. Konings, W. N., and Booth, I. R., 1981, Do the stoichiometrics of ion-linked transport systems vary?, Trends Biochem. Sci. 2: 257 – 262.Google Scholar
  217. Konings, W. L., and Veldkamp, H., 1983, Energy transduction and solute transport mechanisms in relation to environments occupied by microorganisms, in: Microbes in their Natural Environments( J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 153 – 186, Cambridge University Press, London.Google Scholar
  218. Kornberg, A., Kornberg, S. R., and Simms, E. S., 1956, Metaphosphate synthesis by an enzyme from Escherichia coli, Biochim. Biophys. Acta 26: 215–227.Google Scholar
  219. Kornberg, H. L., and Jones-Mortimer, M. C., 1977, The phosphotransferase system as a site of cellular control, in: Microbial Energetics(B. A. Haddock and W. A. Hamilton, eds.), pp. 217–240, Symp. Soc. Gen. Microbiol, no. 27. Cambridge University Press, London.Google Scholar
  220. Krulwich, T. A., and Ensign, J. C., 1969, Alteration of glucose metabolism of Arthrobacter crystallopoietesby compounds which induce sphere to rod morphogenesis, J. Bacteriol. 97: 526 – 534.PubMedGoogle Scholar
  221. Krulwich, T. A., Davidson, L. F., Filip, S. J., Jr., Zuckerman, R. S., and Guffanti, A. A., 1978, The proton motive force and beta galactosidase transport in Bacillus acidocaldarius, J. Biol. Chem. 253: 4599 – 4603.PubMedGoogle Scholar
  222. Kuenen, J. G., and Harder, W., 1982, Microbial competition in continuous culture, in: Experimental Microbial Ecology( R. G. Burns and J. H. Slater, eds.), Blackwell Scientific, Oxford.Google Scholar
  223. Kuenen, J. G., Hassan, H. M., Krinsky, N. I., Morris, J. G., Pfennig, N., Schlegel, H., Shilo, M., Vogels, G. D., Weser, U., and Wolfe, R., 1979, Oxygen Toxicity Group Report, in: Strategies of Microbial Life in Extreme Environments, (M. Shilo, ed.), pp. 223–241, Dahlem Konferenzen 1979, Verlag Chemie, Weinheim, Berlin.Google Scholar
  224. Küenzi, M. T., and Fiechter, A., 1972, Regulation of carbohydrate composition of Saccharomyces cerevisiaeunder growth limitation, Arch. Microbiol. 84: 254 – 265.Google Scholar
  225. Kulaev, I. S., 1971, Inorganic polyphosphates in evolution of phosphorus metabolism, in: Molecular Evolution, Vol. 1 ( R. Buvet and C. Ponnamperuma, eds.), p. 458, North-Holland, Amsterdam.Google Scholar
  226. Kulaev, I. S., 1979, The Biochemistry of Inorganic Polyphosphates, Wiley, Chichester and New York, Translated by R. F. Brookes.Google Scholar
  227. Kulaev, I. S., 1985, Some aspects of environmental regulation of microbial phosphate metabolism, in: Environmental Regulation of Microbial Metabolism, ( I. S. Kulaev, E. A. Dawes, and D. W. Tempest, eds.), pp. 1 – 25, Academic, London.Google Scholar
  228. Kulaev, I. S., and Vagabov, V. M., 1983, Polyphosphate metabolism in microorganisms, Adv. Microbiol. Physiol. 24: 83 – 171.Google Scholar
  229. Kulaev, I. S., Szymona, O., and Bobyk, M. A., 1968, The biosynthesis of inorganic polyphosphates in Neurospora crassa, Biokhimiia 33: 419–434 [in Russian].Google Scholar
  230. Kulaev, I. S., Bobyk, M. A., Nikolaev, N. N., Sergeev, N. S., and Uryson, S. O., 1971, The polyphosphate- synthesizing enzymes of some fungi and bacteria, Biokhimiia 36:943–949 [in Russian].Google Scholar
  231. Kulaev, I. S., Mansurova, S. E., Burlakova, E. B., and Dukhovich, V. F., 1980, Why ATP instead of pyrophosphate? Interrelation between ATP and pyrophosphate production during evolution and in contemporary organisms, Biosystems 12: 177 – 180.PubMedGoogle Scholar
  232. Kushner, D. J. (ed.), 1978, Microbial Life in Extreme Environments, Academic, London.Google Scholar
  233. Kuznetsov, S. I., Dubinina, G. A., and Lapteva, N. A., 1979, Biology of oligotrophic bacteria, Annu. Rev. Microbiol. 33: 377 – 387.PubMedGoogle Scholar
  234. Langworthy, T. A., 1978, Microbial life in extreme pH values, in: Microbial Life in Extreme Environments( D. J. Kushner, ed.), pp. 279 – 315, Academic, London.Google Scholar
  235. Langworthy, T. A., 1979, Membrane structure of thermoacidophilic bacteria, in: Strategies of Microbial Life in Extreme Environments(M. Shilo, ed.), pp. 417–432, Dahlem Konferenzen 1979, Verlag Chemie, Weinheim, Berlin.Google Scholar
  236. Langworthy, T. A., Brock, T. D., Castenholz, R. W., Esser, A. F., Johnson, E. J., Oshima, T., Tsuboi, M., Zeikus, J. G., and Zuber, H., 1979, Life at High Temperatures Group Report, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 489 – 502, Verlag Chemie, Berlin.Google Scholar
  237. Lanyi, J. H., 1974, Salt-dependent properties of proteins, from extremely halophilic bacteria, Bacteriol. Rev. 38: 272 – 290.PubMedGoogle Scholar
  238. Lanyi, J. K., and Silverman, M. P., 1979, Gating effects in Halobacterium halobiummembrane transport, J. Biol. Chem. 254: 4750 – 4755.PubMedGoogle Scholar
  239. Larsen, H., 1967, Biochemical aspects of extreme halophilism, Adv. Microb. Physiol. 1: 97 – 132.Google Scholar
  240. Larsen, S. H., Alder, J., Gargus, J. J., and Hogg, R. W., 1974, Chemomechanical coupling without ATP: The source of energy for motility and chemotaxis in bacteria, Proc. Natl. Acad. Sci. USA 71: 1239 – 1243.PubMedGoogle Scholar
  241. Leckie, M. P., Tieber, V. L., Porter, S. E., and Dietzler, D. N., 1980, The relA gene is not required for glycogen accumulation during NH4+ starvation of Escherichia coli, Biochem. Biophys. Res. Commun. 95: 924 – 931.PubMedGoogle Scholar
  242. Leckie, M. P., Porter, S. E., Tieber, V. L., and Dietzler, D. N., 1981, Regulation of the basal and cyclic AMP- stimulated rates of glycogen synthesis in Escherichia coliby an intermediate of purine biosynthesis, Biochem. Biophys. Res. Commun. 99: 1433 – 1442.PubMedGoogle Scholar
  243. Leedle, J. A. Z., Bryant, M. P., and Hespell, R. B., 1982, Diurnal variations in bacterial numbers and fluid parameters in ruminal content of animals fed low- or high-forage diets, Appl. Environ. Microbiol. 44:402– 412.Google Scholar
  244. Lehmann, M., and Wöber, G., 1976, Accumulation, mobilization and turnover of glycogen in the blue-green bacterium Anacystis nidulans, Arch. Microbiol. 111: 93 – 97.PubMedGoogle Scholar
  245. Leps, W. T., and Ensign, J. C., 1979a, Adenosine triphosphate pool levels and energy charge in Arthrobacter crystallopoietes during growth and starvation, Arch. Microbiol. 122:61–67.Google Scholar
  246. Leps, W. T., and Ensign, J. C., 1919b, Adenylate nucleotide levels and energy charge in Arthrobacter crystallopoietes during growth and starvation, Arch. Microbiol. 122:69–76.Google Scholar
  247. Lewis, J. C., Snell, N. S., and Burr, H. K., 1960, Water permeability of bacterial spores and the concept of a contractile cortex, Science 132: 544 – 545.PubMedGoogle Scholar
  248. Limsong, S., and Frazier, W. C., 1966, Adaptation of Pseudomonas fluorescensto low levels of water activity produced by different solutes, Appl. Microbiol. 14: 899 – 901.PubMedGoogle Scholar
  249. Lin, L. P., and Sadoff, H. L., 1968, Encystment and polymer production by Azotobacter vinelandiiin the presence of (3-hydroxybutyrate, J. Bacteriol. 95: 2336 – 2343.PubMedGoogle Scholar
  250. Lin, L. P., and Sadoff, H. L., 1969, Chemical composition of Azotobacter vinelandiicysts, J. Bacteriol. 100: 480 – 486.PubMedGoogle Scholar
  251. Lindner, J. G. E. M., Marcelis, J. H., Vos, N. M. De, and Hoogkamp-Korstanje, J. A. A., 1979, Intracellular polysaccharide of Bacteroides fragilis, J. Gen. Microbiol. 111: 93 – 99.PubMedGoogle Scholar
  252. Linton, J. D., and Cripps, R. E., 1978, The occurrence and identification of intracellular polyglucose storage granules in MethylococcusNCIB 11083, grown in chemostat culture on methane, Arch. Microbiol. 117: 41 – 48.PubMedGoogle Scholar
  253. Linton, J. D., Griffiths, K., and Gregory, M., 1981, The effect of mixtures of glucose and formate on the yield and respiration of a chemostat culture of Beneckea natriegens, Arch. Microbiol. 129: 119 – 122.Google Scholar
  254. Lipmann, F., 1965, Projecting backward from the present stage of evolution of biosynthesis, in: The Origins of Prebiological Systems( S. W. Fox, ed.), pp. 259 – 280, Academic, New York.Google Scholar
  255. Liss, E., and Langen, P., 1962, Versuche zur Polyphosphat-Uber-kompensation in Hefelzeilen nach Phosphat- verarmung, Arch. Microbiol. 41: 383 – 392.Google Scholar
  256. Liu, C. L., Hart, N., and Peck, H. D., Jr., 1982, Inorganic pyrophosphate: energy source for sulfate-reducing bacteria of the genus Desulfotomaculum, Science 217: 363 – 364.PubMedGoogle Scholar
  257. Ljunger, C., 1970, On the nature of the heat resistance of thermophilic bacteria, Physiol. Plant. 23: 351 – 364.Google Scholar
  258. Ljunger, C., 1973, Further investigations on the nature of the heat resistance of thermophilic bacteria, Physiol. Plant. 28: 415 – 418.Google Scholar
  259. Lloyd, D., Morgan, N. A., John, L., and Venables, S. E., 1978, Starvation of Prototheca zopfii, J. Gen. Microbiol. 105: 1 – 10.Google Scholar
  260. Loperfido, B., and Sadoff, H. L., 1973, Germination of Azobacter vinelandiicysts: Sequence of mac- romolecular synthesis and nitrogen fixation, J. Bacteriol. 113: 841 – 846.PubMedGoogle Scholar
  261. Luscombe, B. M., and Gray, T. R. G., 1974, Characteristics of Arthrobactergrown in continuous culture, J. Gen. Microbiol. 82: 213 – 222.Google Scholar
  262. Maaløe, O., 1979, Regulation of the protein-synthesizing machinery-ribosomes, tRNA, factors and so on, in: Biological Regulation and Development, Vol. 1 ( R. F. Goldberger, ed.), pp. 487 – 542, Plenum, New York.Google Scholar
  263. Maaløe, O., and Kjeldgaard, N. O., 1966, Control of Macromolecular Synthesis, W. A. Benjamin, New York.Google Scholar
  264. MacKelvie, R. M., Campbell, J. J. R., and Gronlund, A. F., 1968, Absence of storage products in cultures of Pseudomonas aeruginosagrown with excess carbon or nitrogen, Can. J. Microbiol. 14: 627 – 631.PubMedGoogle Scholar
  265. Macleod, C. J., Dunnill, P., and Lilly, M. D., 1975. The synthesis of β-galactosidase by constitutive and other regulatory mutants of Escherichia coliin chemostat culture, J. Gen. Microbiol. 89: 221 – 228.PubMedGoogle Scholar
  266. Macleod, R. M., and Calcott, P. H., 1976, Cold shock and freezing damage to microbes, in: The Survival of Vegetative Microbes( T. R. G. Gray and J. R. Postgate, ed.), pp. 81 – 109, Cambridge University Press, London.Google Scholar
  267. Macrae, R. M., and Wilkinson, J. F., 1958a, Poly-–-hydroxybutyrate metabolism in washed suspensions of Bacillus cereus and Bacillus megaterium, J. Gen. Microbiol. 19:210–222.Google Scholar
  268. Macrae, R. M., and Wilkinson, J. F., 1958b, The influence of cultural conditions on poly-–-hydroxybutyrate synthesis in Bacillus megaterium, Proc. R. Phys. Soc. Edin. 27:73–78.Google Scholar
  269. Mallette, M. F., 1963, Validity of the concept of energy of maintenance, Ann. NY Acad. Sci. 102: 521 – 535.PubMedGoogle Scholar
  270. Maloney, P. C., 1982, Coupling between H+ entry and ATP synthesis in bacteria, in: Current Topics in Membranes and Transport, Vol. 16 ( C. L. Slayman, ed.), pp. 175 – 193, Academic, New York.Google Scholar
  271. Maloney, P. C., 1983, Relationship between phosphorylation potential and electrochemical H+ gradient during glycolysis in Streptococcus lactis, J. Bacteriol. 153: 1461 – 1470.PubMedGoogle Scholar
  272. Mandelstam, J., 1976, Bacterial sporulation: A problem in the biochemistry and genetics of a primitive developmental system, Proc. R. Soc. Lond. [Biol.] 193: 89 – 106.Google Scholar
  273. Manian, S. S., and Ward, F. B., 1983, The effect of growth rate on the viability of Bacillus stearothermophilus, FEMS Microbiol. Lett. 18: 161 – 165.Google Scholar
  274. Marr, A. G., and Ingraham, J. L., 1962, Effect of temperature on the composition of fatty acids in Escherichia coli, J. Bacteriol. 84: 1260 – 1267.PubMedGoogle Scholar
  275. Marr, A. G., Nilson, E. H., and Clark, D. J., 1963, The maintenance requirement of Escherichia coli, Ann. NY Acad. Sci. 102: 536 – 548.Google Scholar
  276. Marshall, B. J., and Murrell, W. G., 1970, Biophysical analysis of the spore, J. Appl. Bacteriol. 33: 103 – 129.PubMedGoogle Scholar
  277. Marshall, B. J., Ohyde, D. F., and Christian, J. H. B., 1971, Tolerance of bacteria to high concentrations of NaCl and glycerol in the growth medium, Appl. Microbiol. 21: 363 – 364.Google Scholar
  278. Marshall, K. C., 1976, Interface in Microbial Ecology, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  279. Marshall, K. C., 1979, Growth at interfaces, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 281 – 290, Verlag Chemie, Berlin.Google Scholar
  280. Martens, R., 1983, Estimation of adenylate energy charge ratio in soils, in: Third International Symposium on Microbial Ecology, p. 62. (abstr. N8)Google Scholar
  281. Mateles, R. I. Chian, S. K., and Silver, R., 1967, in Microbial Physiology and Continuous Culture(E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 232–239, HMSO, London.Google Scholar
  282. Matin, A., 1979, Microbial regulatory mechanisms at low nutrient concentrations as studied in chemostat, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 323 – 339, Verlag Chemie, Weinheim.Google Scholar
  283. Matin, A., and Veldkamp, H., 1978, Physiological basis of the selective advantage of a Spirillumsp. in a carbon-limited environment, J. Gen. Microbiol. 105: 187 – 197.PubMedGoogle Scholar
  284. Matin, A., Grootjans, A., and Hoogenhuis, H., 1976, Influence of dilution rate on enzymes of intermediary metabolism in two freshwater bacteria grown in continuous culture, J. Gen. Microbiol. 94: 323 – 332.PubMedGoogle Scholar
  285. Matin, A., Veldhuis, C., Stegeman, V., and Veenhuis, M., 1979, Selective advantage of a Spirillumsp. in a carbon-limited environment. Accumulation of poly-P-hydroxybutyric acid and its role in starvation, J. Gen. Microbiol. 112: 349 – 355.PubMedGoogle Scholar
  286. Mattenheimer, H., 1956a, Die Substratspezifitat –anorganischer– Poly- und Metaphosphatasen. I. Optimale Wirkungsbedent ungen fur den enzymatischen Abbau von Poly- und Metaphosphaten, Z. Physiol. Chem. 303:107–114.Google Scholar
  287. Mattenheimer, H., 1956b, Die Substratspezifitat –anorganischer– Poly- und Metaphosphatasen. II. Trennung der Enzyme, Z. Physiol. Chem. 303:115–124.Google Scholar
  288. Mattenheimer, H., 1956c, Die Substratspezifitat anorganischer Poly- und Metaphosphatasen. III. Papirchrom- atographische Untersuchungen beim enzymatischen Abbau von anorganischen Poly- und Metaphosphaten, Z. Physiol. Chem. 303:125–139.Google Scholar
  289. McGrew, S. B., and Mallette, M. F., 1962, Energy of maintenance in Escherichia coli, J. Bacteriol. 83: 344 – 350.Google Scholar
  290. McGrew, S. B., and Mallette, M. F., 1965, Maintenance of Escherichia coliand the assimilation of glucose, Nature (Lond.) 208: 1096 – 1097.Google Scholar
  291. McInerney, M. J., Bryant, M. P., Hespell, R. B., and Costerton, J. W., 1981, Syntrophomonas wolfeigen nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium, Appl. Environ. Microbiol. 41: 1029 – 1039.Google Scholar
  292. Measures, J. C., 1975, Role of amino acids in osmoregulation of non-halophilic bacteria, Nature (Lond.) 257: 398 – 400.Google Scholar
  293. Meganathan, R., and Ensign, J. C., 1976, Stability of enzymes in starving Arthrobacter crystallopoietes, J. Gen. Microbiol. 94: 90 – 96.PubMedGoogle Scholar
  294. Merrick, J. M., Delafield, F. P., and Doudoroff, M., 1962, Hydrolysis of poly-β-hydroxybutyrate by intracellular and extracellular enzymes, Fed. Proc. 21: 228.Google Scholar
  295. Meyer, D. J., and Jones, C. W., 1973, Oxidative phosphorylation in bacteria which contain different cytochrome oxidases, Eur. J. Biochem. 36: 144 – 151.PubMedGoogle Scholar
  296. Meyer-Reil, L. A., 1978, Autoradiography and epifluorescence microscopy combined for the determination of number and spectrum of actively metabolizing bacteria in natural waters, Appl. Environ. Microbiol. 36: 505 – 512.Google Scholar
  297. Michels, P. A. M., and Konings, W. N., 1978, The electrochemical proton gradient generated by light in membrane vesicles and chromatophores from Rhodopseudomonas spheroides, Eur. J. Biochim. 85: 147 – 155.Google Scholar
  298. Michels, P. A. M., Michels, J. P. J., Boonstra, J., and Konings, W. N., 1979, Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products, FEMS Microbiol. Lett. 5: 357 – 364.Google Scholar
  299. Midgley, M., and Dawes, E. A., 1973, The regulation of transport of glucose and methyl-a-glucoside in Pseudomonas aeruginosa, Biochem. J. 132: 141 - 154.PubMedGoogle Scholar
  300. Miller, S. L., and Parris, M., 1964, Synthesis of pyrophosphate under primitive earth conditions, Nature (Lond.) 204: 1248 – 1250.Google Scholar
  301. Mink, R. W., and Hespell, R. B., 1981a, Survival of Me gasphaera elsdenii during starvation, Curr. Microbiol. 5:51–56.Google Scholar
  302. Mink, R. W., and Hespell, R. B., 1981b, Long-term nutrient starvation of continuously cultured (glucose- limited) Selenomonas ruminantium, J. Bacteriol. 148:541–550.Google Scholar
  303. Mink, R. W., Patterson, J. A., and Hespell, R. B., 1982, Changes in viability, cell composition, and enzyme levels during starvation of continuously cultured (ammonia-limited) Selenomonas ruminantium, Appl. Environ. Microbiol. 44: 913 – 922.PubMedGoogle Scholar
  304. Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Glynn Research Ltd., Bodmin.Google Scholar
  305. Mohammad, F. A. A., Reed, R. H., and Stewart, W. D. P., 1983, The halophilic cyanobacterium Syn- echocystis DUN52 and its osmotic responses, FEMS Microbiol. Lett. 16: 287 – 290.Google Scholar
  306. Monod, J., 1942, Recherches sur la croissance des cultures bactériennes, Hermann, Paris.Google Scholar
  307. Monod, J., 1950, La technique de culture continué: Théorie et applications, Ann. Inst. Pasteur. 79: 390 – 410.Google Scholar
  308. Montague, M. D., and Dawes, E. A., 1974, The survival of Peptococcus prévotiiin relation to the adenylate energy charge, J. Gen. Microbiol. 80: 291 – 299.PubMedGoogle Scholar
  309. Moore, R. L., 1981, The biology of Hymphomicrobiumand other prosthecate, budding bacteria, Annu. Rev. Microbiol. 35: 567 – 594.PubMedGoogle Scholar
  310. Moriarty, D. J. W., White, D. C., and Wassenberg, T. J., 1985, A convenient method for measuring rates of phospholipid synthesis in seawater and sediments: Its relevance to the determination of bacterial productivity and the disturbance artifacts introduced by measurements, J. Microbiol. Methods 3: 321 – 330.Google Scholar
  311. Morita, R. Y., 1968, in: Marine Microbiology, Proceedings of the Fourth International Interdisciplinary Conference (C. H. Oppenheimer, ed.), pp. 97, New York Academy of Sciences, New York.Google Scholar
  312. Morita, R. Y., 1975, Psychrophilic bacteria, Bacteriol. Rev. 39: 144 – 167.PubMedGoogle Scholar
  313. Morita, R. Y., 1982, Starvation-survival of heterotrophs in the marine environment, Adv. Microb. Ecol. 6: 171 – 198.Google Scholar
  314. Morris, J. G., 1975, The physiology of obligate anaerobiosis, Adv. Microb. Physiol. 12: 169 – 246.Google Scholar
  315. Morris, J. G., 1976, Oxygen and the obligate anaerobe, J. Appl. Bacteriol. 40: 229 – 244.PubMedGoogle Scholar
  316. Morris, J. G., 1979, Nature of oxygen toxicity in anaerobic micro-organisms, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed), pp. 149 – 162, Dahlem Konferenzen, Berlin.Google Scholar
  317. Mosley, G. A., Card, G. L., and Koostra, W. L., 1976, Effect of calcium and anaerobiosis on the thermostability of Bacillus stearothermophilus, Can. J. Microbiol. 22: 468 – 474.PubMedGoogle Scholar
  318. Muhammed, A., Rodgers, A., and Hughes, D. E., 1959, Purification and properties of a polymetaphosphatase from Corynebacterium xerosis, J. Gen. Microbiol. 20: 482 – 495.PubMedGoogle Scholar
  319. Murrell, W. G., and Warth, A. D., 1965, Composition and heat resistance of bacterial spores, in: Spores, Vol. Ill ( L. L. Campbell and H. O. Halvorson, eds.), pp. 1 – 24, American Society for Microbiology, Ann Arbor, Michigan.Google Scholar
  320. Nakata, H. M., 1966, Role of acetate in sporogenesis of Bacillus cereus, J. Bacteriol. 91: 784 – 788.PubMedGoogle Scholar
  321. Nath, K., and Koch, A. L., 1970, Protein degradation in Escherichia coli. I. Measurement of rapidly and slowly decaying components, J. Biol. Chem. 245: 2889 – 2900.PubMedGoogle Scholar
  322. Neidhardt, F. C., Van Bogelen, R. A., and Vaughn, V., 1984, The genetics and regulation of heat-shock proteins, Annu. Rev. Genet. 18: 295 – 329.PubMedGoogle Scholar
  323. Neijssel, O. M., and Tempest, D. W., 1975, Production of gluconic acid and 2-ketogluconic acid by Klebsiella aerogenesNCTC 418, Arch. Microbiol. 105: 183 – 185.PubMedGoogle Scholar
  324. Neijssel, O. M., and Tempest, D. W., 1976a, Bioenergetic aspects of aerobic growth of Klebsiella aerogenes NCTC 418 in carbon-limited and carbon-sufficient chemostat culture, Arch. Microbiol. 107:215–221.Google Scholar
  325. Neijssel, O. M., and Tempest, D. W., 1976b, The role of energy-spilling reactions in the growth of Klebsiella aerogenes NCTC 418 in aerobic chemostat culture, Arch. Microbiol. 110:305–311.Google Scholar
  326. Neijssel, O. M., Tempest, D. W., Postma, P. W., Duine, J. A., and Frank, J., 1983, Glucose metabolism by K+ -limited Klebsiella aerogenes: Evidence for the involvement of a quinoprotein glucose dehydrogenase, FEMS Microbiol. Lett. 20: 35 – 39.Google Scholar
  327. Neilands, J. B., and Ratledge, C., 1982, Microbial iron transport compounds in: CRC Handbook of Microbiology, 2nd ed., Vol. IV (A. I. Laskin and H. A. Lechevalier, eds.), pp. 565–574, CRC Press, Boca Raton, Florida.Google Scholar
  328. Nelson, L. M., 1978, Effect of temperature, growth rate, and nutrient limitation on the yield and composition of three bacterial isolates from an artic soil grown in continuous culture, Can. J. Microbiol. 24: 1452 – 1459.PubMedGoogle Scholar
  329. Newell, S. Y., Fallon, R. D., and Tabor, P. S., 1986, Direct microscopy of natural assemblages, in: Bacteria in Nature, Vol. 2 ( J. S. Poindexter and E. R. Leadbetter, eds.), pp. 1 – 48, Plenum, New York.Google Scholar
  330. Ng, F. M-W., and Dawes, E. A., 1973, Chemostat studies on the regulation of glucose metabolism in Pseudomonas aeruginosaby citrate, Biochem. J. 132: 129 – 140.PubMedGoogle Scholar
  331. Nickels, J. S., King, J. D., and White, D. C., 1979, Poly-beta-hydroxybutyrate metabolism as a measure of unbalanced growth of the estuarine detrital microflora, Appl. Environ. Microbiol. 37: 459 – 465.PubMedGoogle Scholar
  332. Nierlich, D. P., 1978, Regulation of bacterial growth, RNA, and protein synthesis, Annu. Rev. Microbiol. 32: 393 – 432.PubMedGoogle Scholar
  333. Norkrans, B., 1980, Surface microlayers in aquatic environments, in: Advances in Microbial Ecology, Vol. IV ( M. Alexander, ed.), pp. 51 – 85, Plenum, New York.Google Scholar
  334. Norton, R. S., MacKay, M. A., and Borowitzka, L. J., 1982, The physical state of osmoregulatory solutes in unicellular algae. A natural abundance carbon-13 nuclear magnetic resonance relaxation study, Biochem. J. 202: 699 – 706.PubMedGoogle Scholar
  335. Novick, A., and Szilard, L., 1950, Experiments with the chemostat on spontaneous mutations of bacteria, Proc. Natl. Acad. Sci. USA 36: 708 – 719.PubMedGoogle Scholar
  336. Novitsky, J. A., and Morita, R. Y., 1976, Morphological characterization of small cells resulting from nutrient starvation of a psychrophilic marine vibrio, Appl. Environ. Microbiol. 32: 617 – 622.PubMedGoogle Scholar
  337. Novitsky, J. A., and Morita, R. Y., 1977, Survival of a psychrophilic marine vibrio under long-term nutrient starvation, Appl. Environ. Microbiol. 33: 635 – 641.PubMedGoogle Scholar
  338. Novitsky, J. A., and Morita, R. Y., 1978a, Starvation-induced barotolerance as a survival mechanism of a psychrophilic marine vibrio in the waters of the Antarctic convergence, Marine Biol. 49:7–10.Google Scholar
  339. Novitsky, J. A., and Morita, R. Y., 19786, Possible strategy for the survival of marine bacteria under starvation conditions, Marine Biol. 48:289–295.Google Scholar
  340. O’Brien, R. W., Neijssel, O. M., and Tempest, D. W., 1980, Glucose phosphoeflo/pyruvate phosphotransferase activity and glucose uptake rate of Klebsiella aerogenesgrowing in chemostat culture, J. Gen. Microbiol. 116: 305 – 314.PubMedGoogle Scholar
  341. Oeding, V., and Schlegel, H. G., 1973, –-Ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-–-hydroxybutyrate metabolism, Biochem. J. 134:239–248.Google Scholar
  342. Oshima, T., 1979, Molecular basis for unusual thermostabilities of cell constituents from an extreme thermophile, Thermus thermophilus, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 455 – 469, Verlag Chemie, Berlin.Google Scholar
  343. Otto, R., Hugenholtz, J., Konings, W. N., and Veldkamp, H., 1980a, Increase of molar growth yield of Streptococcus cremoris for lactose as a consequence of lactate consumption by Pseudomonas stuzeri in mixed cultures, FEMS Microbiol. Lett. 9:85–88.Google Scholar
  344. Otto, R., Sonnenberg, A. S. M., Veldkamp, H., and Konings, W. N., 1980b, Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux, Proc. Natl. Acad. Sci. USA 77:5502–5506.Google Scholar
  345. Otto, R., Lageveen, R. G., Veldkamp, H., and Konings, W. N, 1982, Lactate efflux-induced electrical potential in membrane vesicles of Streptococcus cremoris, J. Bacteriol. 149: 733 – 738.PubMedGoogle Scholar
  346. Otto, R., Ten Brink, B., Veldkamp, H., and Konings, W. N., 1983, The relation between growth rate and electrochemical proton gradient of Streptococcus cremoris, FEMS Microbiol. Lett. 16: 69 – 74.Google Scholar
  347. Page, W. J., and Sadoff, H. L., 1975, Relationship between calcium and uronic acids in the encystment of Azotobacter vinelandii, J. Bacteriol. 122: 145 – 151.PubMedGoogle Scholar
  348. Parker, L. T., and Socolofsky, M. D., 1966, Central body of the Azotobactercyst, J. Bacteriol. 91: 297 – 303.PubMedGoogle Scholar
  349. Parnas, H., and Cohen, D., 1976, The optimal strategy for the metabolism of reserve materials in microorganisms, J. Theor. Biol. 56: 19 – 55.PubMedGoogle Scholar
  350. Patel, G. B., and Breuil, C., 1981, Accumulation of an iodophilic polysaccharide during growth of Acetivibrio cellulolyticuson cellobiose, Arch. Microbiol. 129: 265–267.Google Scholar
  351. Peck, H. D., Jr., Liu, C. L., Varma, A. K., Ljungdahl, L. G., Szulczynski, M., Bryant, F., and Carreira, L., 1982, in: Biological Basis of New Developments in Biotechnology(A. Hollaender, A. I. Laskin, and P. Rogers, eds.), pp. 317–346, Plenum, New York.Google Scholar
  352. Pepin, C. A., and Wood, H. G., 1986, Polyphosphate glucokinase from Propionibacterium shermanii, J. Biol. Chem. 261: 4476 – 4480.PubMedGoogle Scholar
  353. Pfennig, N., 1979, Formation of oxygen and microbial processes establishing and maintaining anaerobic environments, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 137 – 148, Verlag Chemie, Berlin.Google Scholar
  354. Pine, M. J., 1970, Steady-state measurement of the turnover of amino acids in the cellular proteins of growing Escherichia coli: Existence of two kinetically distinct reactions, J. Bacteriol. 103: 207 – 215.PubMedGoogle Scholar
  355. Pine, M. J., 1972, Turnover of intracellular proteins, Annu. Rev. Microbiol. 26: 103 – 126.PubMedGoogle Scholar
  356. Pirt, S. J., 1965, The maintenance energy of bacteria in growing cultures, Proc. R. Soc. Lond. [Biol.] 163: 224 – 231.Google Scholar
  357. Pirt, S. J., 1975, Principles of Microbe and Cell Cultivation, Blackwell, Oxford.Google Scholar
  358. Pirt, S. J., 1982, Maintenance energy: A general model for energy-limited and energy-sufficient growth, Arch. Microbiol. 133: 300 – 302.PubMedGoogle Scholar
  359. Poindexter, J. S., 1979, Morphological adaptation to low nutrient concentrations, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 341 – 356, Verlag Chemie, Berlin.Google Scholar
  360. Poindexter, J. S., 1964, Biological properties and classification of the Caulobactergroup, Microbiol. Rev. 28: 231 – 295.Google Scholar
  361. Poindexter, J. S., 1981a, The caulobacters: Ubiquitous unusual bacteria, Microbiol. Rev. 45:123–179.Google Scholar
  362. Poindexter, J. S., 1981b, Oligotrophy: Fast and famine existence, in: Advances in Microbial Ecology, Vol. 5 (M. Alexander, ed.), pp. 63–89, Plenum, New York.Google Scholar
  363. Poindexter, J. S., 1983, Role of prostheca development in oligotrophic aquatic bacteria, in: Current Perspectives in Microbial Ecology( H. J. Klug and C. A. Reddy, eds.), pp. 33 – 40, American Society for Microbiology, Washington, D.C.Google Scholar
  364. Postgate, J. R., 1967, Viability measurements and the survival of microbes under minimum stress, Adv. Microbial. Physiol. 1: 1 – 23.Google Scholar
  365. Postgate, J. R., 1969, Viable counts and viability, in: Methods in Microbiology, Vol. 1 ( J. R. Norris and D. W. Ribbons, eds.), pp. 611 – 628, Academic, New York.Google Scholar
  366. Postgate, J. R., 1976, Death in macrobes and microbes, in: The Survival of Vegetative Microbes( T. R. G. Gray and J. R. Postgate, eds.), pp. 1 – 18, Cambridge University Press, London.Google Scholar
  367. Postgate, J. R., and Hunter, J. R., 1962, The survival of starved bacteria, J. Gen. Microbiol. 29: 233 – 263.PubMedGoogle Scholar
  368. Postgate, J. R., and Hunter, J. R., 1964, Accelerated death of Aerobacter aerogenesstarved in the presence of growth-limiting substrates, J. Gen. Microbiol. 34: 459 – 473.PubMedGoogle Scholar
  369. Postgate, J. R., Crumpton, J. E., and Hunter, J. R., 1961, The measurements of bacterial viabilities by slide culture, J. Gen. Microbiol. 24: 15 – 24.PubMedGoogle Scholar
  370. Powell, E. O., 1967, The growth rate of micro-organisms as a function of substrate concentration, in: Microbial Physiology and Continuous Culture( E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 34 – 55, HMSO, London.Google Scholar
  371. Preiss, J., 1978, Regulation of adenosine diphosphate glucose pyrophosphorylase, Adv. Enzymol. Relat. Areas Mol. Biol. 46: 317 – 381.PubMedGoogle Scholar
  372. Ramsey, H. H., 1962, Endogenous respiration of Staphylococcus aureus, J. Bacteriol. 83: 507 – 514.PubMedGoogle Scholar
  373. Reece, P., Toth, D., and Dawes, E. A., 1976, Fermentation of purines and their effect on the adenylate charge and viability of starved Peptococcus prévotii, J. Gen. Microbiol. 97: 63 – 71.PubMedGoogle Scholar
  374. Reeve, C. A., Bockman, A. T., and Matin, A., 1984a, Role of protein degradation in the survival of carbon- starved Escherichia coli and Salmonella typhimurium, J. Bacteriol. 157:758–763.Google Scholar
  375. Reeve, C. A., Amy, P., and Matin, A., 1984b, Role of protein synthesis in the survival of carbon-starved Escherichia coli K-12, J. Bacteriol. 160:1041–1046.Google Scholar
  376. Reeves, R. E., and Guthrie, J. B., 1975, Acetate kinase (pyrophosphate). A fourth pyrophosphate-dependent kinase from Entamoeba histolytica, Biochem. Biophys. Res. Commun. 66: 1389 – 1395.PubMedGoogle Scholar
  377. Ribbons, D. W., and Dawes, E. A., 1978, Environmental and growth conditions affecting the endogenous metabolism of bacteria, Annals New York Academy of Sciences 102: 564 – 586.Google Scholar
  378. Richardson, D. L., Mohammad, F. A. A., Reed, R. H., and Stewart, W. D. P., 1982, Freshwater and halophilic cyanobacteria: osmotic responses in extreme environments, in: Abstracts of the IVth International Symposium on Photosynthetic Prokaryotes, Bombannes—Bordeaux, September 1982, A36.Google Scholar
  379. Rickenberg, H. V., 1974, Cyclic AMP in procaryotes, Annu. Rev. Microbiol. 28: 353 – 369.PubMedGoogle Scholar
  380. Righelato, R. C., and Van Hemert, P. A., 1969, Growth and toxin synthesis in batch and chemostat cultures of Croynebacterium diphtheriae, J. Gen. Microbiol. 58: 403 – 410.PubMedGoogle Scholar
  381. Riley, R. G., and Kolodziej, B. J., 1976, Pathway of glucose catabolism in Caulobacter crescentus, Microbios 16: 216 – 226.Google Scholar
  382. Ritchie, G. A. F., and Dawes, E. A., 1969, The non-involvement of acyl-carrier protein in poly-β- hydroxybutyric acid biosynthesis in Azotobacter beijerinckii, Biochem. J. 112: 803 – 805.PubMedGoogle Scholar
  383. Ritchie, G. A. F., Senior, P. J., and Dawes, E. A., 1971, The purification and characterization of acetoacetyl- coenzyme A reductase from Azotobacter beijerinckii, Biochem. J. 121: 309 – 316.PubMedGoogle Scholar
  384. Robertson, J. G., and Batt, R. D., 1973, Survival of Nocardia corallinaand degradation of constituents during starvation. J. Gen. Microbiol. 78: 109 – 117.Google Scholar
  385. Robinson, J. B., Salonius, P. O., and Chase, F. E., 1965, A note on the differential response of Arthrobacterspp. and Pseudomonasspp. to drying soil, Can. J. Microbiol. 11: 746 – 748.PubMedGoogle Scholar
  386. Robinson, N. A., and Wood, H. G., 1986, Polyphosphate kinase from Propionibacterium shermanii, J. Biol. Chem. 261: 4481 – 4485.Google Scholar
  387. Rogers, H. J., 1977, Peptidoglycans (mucopeptides), structure, form and function, in: Spore Research 1976( A. N. Barker, J. Wolf, D. J. Ellar, G. J. Dring, and G. W. Gould, eds.), Academic, London.Google Scholar
  388. Rose, A. H., 1976, Osmotic stress and microbial survival, in: The Survival of Vegetative Microbes( T. R. G. Gray and J. R. Postgate, eds.), pp. 155 – 182, Cambridge University Press, London.Google Scholar
  389. Ryan, F. J., 1959, Bacterial mutation in a stationary phase and the question of cell turnover, J. Gen. Microbiol. 21: 530 – 549.PubMedGoogle Scholar
  390. Sadoff, H. L., 1969, Spore enzymes, in: The Bacterial Spore( G. W. Gould and A. Hurst, eds.), pp. 275 – 299, Academic, London.Google Scholar
  391. Sadoff, H. L., 1975, Encystment and germination in Azotobacter vinelandii, Bacteriol. Rev. 39: 516 – 539.PubMedGoogle Scholar
  392. Saier, M. H., Jr., and Roseman, S., 1976, Sugar transport. Inducer exclusion and regulation of the melibiose, maltose, glycerol and lactose transport systems by the phosphoenolpyruvate: Sugar phosphotransferase system, J. Biol. Chem. 251: 6606 – 6615.PubMedGoogle Scholar
  393. Schachtele, C. F., and Leung, W. S., 1975, Effect of sugar analogues on growth, sugar utilization, and acid production by Streptococcus mutans J. Dent. Res. 54: 433 – 440.PubMedGoogle Scholar
  394. Schlegel, H. G., and Jannasch, H. W., 1967, Enrichment cultures, Annu. Rev. Microbiol. 21: 49 – 70.PubMedGoogle Scholar
  395. Schlegel, H. G., Gottschalk, G., and Von Bartha, R., 1961, Formation and utilization of poly-β-hydroxybutyric acid by knallgas bacteria (Hydrogenomonas), Nature (Lond.) 191: 463 – 465.Google Scholar
  396. Schmidt, J. M., and Samuelson, G. M., 1972, Effects of cyclic nucleotides and nucleoside triphosphates on stalk formation in Caulobacter crescentus, J. Bacteriol. 112: 593 – 601.PubMedGoogle Scholar
  397. Schmidt, J. M., and Stanier, R. Y., 1966, The development of cellular stalks in bacteria, J. Cell. Biol. 28: 423 – 436.PubMedGoogle Scholar
  398. Schulz, E., and Hirsch, P., 1973, Morphologically unusual bacteria in acid bog water habitants, Abst. Am. Soc. Microbiol. 73: 60.Google Scholar
  399. Schuster, E., and Schlegel, H. G., 1967, Chemolithotrophes Wachstum Von Hydrogenomonas H16 im Chemostaten mit elektrolytscher Knallgaserzeugung, Arch. Microbiol. 58: 380 – 409.Google Scholar
  400. Scott, C. C. L., and Finnerty, W. R., 1976, A comparative analysis of the ultrastructure of hydrcoarbon- oxidizing micro-organisms, J. Gen. Microbiol. 94: 342 – 350.PubMedGoogle Scholar
  401. Scott, W. J., 1957, Water relations of food spoilage micro-organisms, Adv. Food Res. 7: 83 – 127.Google Scholar
  402. Senez, J. C., 1962, Some considerations on the energetics of bacterial growth, Bacteriol. Rev. 26: 95 – 107.PubMedGoogle Scholar
  403. Senior, P. J., and Dawes, E. A., 1971, Poly-β-hydroxybutyrate biosynthesis and the regulation of glucose metabolism in Azotobacter beijerinckii, Biochem. J. 125: 55 – 66.PubMedGoogle Scholar
  404. Senior, P. J., and Dawes, E. A., 1973, The regulation of poly-β-hydroxy butyrate metabolism in Azotobacter beijerinckii, Biochem. J. 134: 225 – 238.PubMedGoogle Scholar
  405. Senior, P. J., Beech, G. A., Ritchie, G. A. F., and Dawes, E. A., 1972, The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii, Biochem. J. 128: 1193 – 1201.PubMedGoogle Scholar
  406. Shilo, M., (ed.), 1979, Strategies of Microbial Life in Extreme Environments, Dahlem Konferenzen, Verlag Chemie, Weinheim.Google Scholar
  407. Siala, A. H., and Gray, T. R. G., 1974, Growth of Bacillus subtilisand spore germination in soil observed by a fluorescent antibody technique, J. Gen. Microbiol. 81: 191 – 198.Google Scholar
  408. Sieburth, J. M., Brooks, R. D., Gessner, R. V., Thomas, C. D., and Tootle, J. L., 1974, Microbial colonization of marine plant surfaces as observed by scanning electron microscope, in: The Effect of the Ocean Environment on Microbial Activities( R. R. Colwell and R. Y. Morita, eds.), pp. 418 – 432, University Park Press, Baltimore.Google Scholar
  409. Sierra, G, and Gibbons, N. E., 1962, Production of poly-β-hydroxybutyric acid granules in Micrococcus halodenitrificans, Can. J. Microbiol. 8: 249 – 253.PubMedGoogle Scholar
  410. Silver, R. S., and Mateles, R. I., 1969, Control of mixed substrate utilization in continuous cultures of Escherichia coli, J. Bacteriol. 97: 535 – 543.PubMedGoogle Scholar
  411. Simon, R. D., 1973, Measurement of the cyanophycin granule peptide contained in the blue-green alga Anabaena cylindrica, J. Bacteriol. 114: 1213 – 1216.Google Scholar
  412. Simon, R. D., 1976, The biosynthesis of multi-L-arginyl poly (L-aspartic acid) in the filamentous cyanobacterium Anaebaena cylindrica, Biochim. Biophys. Acta 422: 407 – 418.PubMedGoogle Scholar
  413. Simon, R. D., and Weathers, P., 1976, Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in cyanobacteria, Biochim. Biophys. Acta 420: 165 – 176.PubMedGoogle Scholar
  414. Simoni, R. D., and Postma, P. W., 1975, The energetics of bacterial active transport, Annu. Rev. Biochem. 44: 523 – 554.PubMedGoogle Scholar
  415. Singleton, F. L., Attwell, R. W., Jangi, M. S., and Colwell, R. R., 1982, Influence of salinity and organic nutrient concentration on survival and growth of Vibrio choleraein aquatic microcosms, Appl. Env. Microbiol. 43: 1080 – 1085.Google Scholar
  416. Sivakanesan, R., and Dawes, E. A., 1980, Anaerobic glucose and serine metabolism in Staphylococcus epidermidis, J. Gen. Microbiol. 118: 143 – 157.PubMedGoogle Scholar
  417. Sjogren, R. E., and Gibson, M. J., 1981, Bacterial survival in a dilute environment, Appl. Env. Microbiol. 41: 1331 – 1336.Google Scholar
  418. Slepecky, R. A., 1972, Ecology of bacterial spore formers, in: Spores, Vol. V, pp. 297 – 313, American Society for Microbiology, Ann Arbor, Michigan.Google Scholar
  419. Slepecky, R. A., and Law, J. H., 1961, Synthesis and degradation of poly-β-hydroxybutyric acid in connection with sporulation of Bacillus megaterium, J. Bacteriol. 82: 37 – 42.PubMedGoogle Scholar
  420. Smit, J., 1933, The biology of the fermenting sarcinae, J. Pathol. 36: 455 – 468.Google Scholar
  421. Smith, D. D., and Wyss, O., 1969, The rapid loss of viability of Azotobacterin aqueous solutions, Antonie van Leeuwenhoek 35: 84 – 96.PubMedGoogle Scholar
  422. Sobek, J. M., Charba, J. F., and Foust, W. N., 1966, Endogenous metabolism of Azotobacter agilis, J. Bacteriol. 92: 687 – 695.PubMedGoogle Scholar
  423. Sonnleitner, B., Heinzle, E., Braunegg, G., and Lafferty, R. M., 1979, Formal kinetics of poly-β-hydroxybutyric acid (PHB) production in Alcaligenes eutrophus H16and Mycoplana rubra R14with respect to the dissolved oxygen tension in ammonium-limited batch culture, Eur. J. Appl. Microbiol. Technol. 7: 1 – 10.Google Scholar
  424. Sparling, G. P., 1981, Microcalorimetry and other methods to assess biomass and activity in soil, Soil Biol. Biochem. 13: 93 – 98.Google Scholar
  425. Stahl, S., 1978, Calcium uptake and survival of Bacillus stearothermophilus, Arch. Microbiol. 119: 17 – 24.PubMedGoogle Scholar
  426. Stanier, R. Y., Doudoroff, M., Kunisawa, R., and Contopolou, R., 1959, The role of organic substrates in bacterial photosynthesis, Proc. Natl. Acad. Sci. USA 45: 1246 – 1260.PubMedGoogle Scholar
  427. Stanley, S. O., and Brown, C. M., 1974, Influence of temperature and salinity on the amino acid pools of some marine pseudomonads, in: The Effect of the Ocean Environment on Microbial Activity( R. R. Colwell and R. Y. Morita, eds.), pp. 92 – 103, University Park Press, Baltimore.Google Scholar
  428. Stevens, S. E., Jr., Balkwill, D. L., and Paone, D. A. M., 1981, The effects of nitrogen limitation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum, Arch. Microbiol. 130: 204 – 212.Google Scholar
  429. Stevenson, L. H., 1978, A case for bacterial dormancy in aquatic systems, Microb. Ecoi 4: 127 – 133.Google Scholar
  430. Stevenson, L. H., and Socolofsky, M. D., 1966, Cyst formation and poly-beta-hydroxybutyric acid accumulation in Azotobacter, J. Bacteriol. 91: 304 – 310.PubMedGoogle Scholar
  431. Stevenson, L. H., and Socolofsky, M. D., 1972, Encystment of Azotobacter vinelandiiin liquid culture, Antonie van Leeuvenhoek, 38: 605 – 610.Google Scholar
  432. Stewart, W. D. P., 1983, Natural environments—Challenges to microbial success and survival, in: Microbes in their Natural Environments( J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 1 – 35, Cambridge University Press, London.Google Scholar
  433. Stjernholm, R., 1958, Formation of trehalose during dissimilation of glucose by Propionibacterium, Acta Chem. Scand. 12: 646 – 649.Google Scholar
  434. Stockdale, H., 1967, A comparative survey of poly-β-hydroxybutyrate in the Azotobacteriaceae with special reference to the endogenous metabolism and survival of Azotobacter insigne, Doctoral thesis, University of Hull.Google Scholar
  435. Stockdale, H., Ribbons, D. W., and Dawes, E. A., 1968, Occurrence of poly-β-hydroxybutyrate in the Azotobacteriaceae, J. Bacteriol. 95: 1798 – 1803.PubMedGoogle Scholar
  436. Stokes, J. L., and Parson, W. L., 1968, Role of poly-β-hydroxybutyrate in survival of Sphaerotilus discophorusduring starvation, Can. J. Microbiol. 14: 785 – 789.PubMedGoogle Scholar
  437. Stouthamer, A. H., 1973, Theoretical study on the amount of ATP required for synthesis of microbial cell material, Antonie van Leeuwenhoek 39: 545 – 565.PubMedGoogle Scholar
  438. Stouthamer, A. H., 1979, The search for correlation between theoretical and experimental growth yields, in: International Review of Biochemistry, Vol. 21: Microbial Biochemistry( J. R. Quayle, ed.), pp. 1 – 47, University Park Press, Baltimore.Google Scholar
  439. Stouthamer, A. H., and Bettenhaussen, C. W., 1977, A continuous culture study of an ATPase-negative mutant of Escherichia coli, Arch. Microbiol. 113: 185 – 189.PubMedGoogle Scholar
  440. Strange, R. E., 1966, Stability of β-galactosidase in starved Escherichia coli, Nature (Lond.) 209: 428 – 429.Google Scholar
  441. Strange, R. E., 1968, Bacterial glycogen and survival, Nature (Lond.) 220: 606 – 607.Google Scholar
  442. Strange, R. E., 1976, Microbial Response to Mild Stress, Meadowfield Press, Shildon.Google Scholar
  443. Strange, R. E., and Hunter, J. R., 1967, Effect of magnesium on the survival of bacteria in aqueous suspension, in: Microbial Physiology and Continuous Culture( E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 102 – 121, HMSO, London.Google Scholar
  444. Strange, R. E., Dark, F. A., and Ness, A. G., 1961, The survival of stationary phase Aerobacter aerogenesstored in aqueous suspension, J. Gen. Microbiol. 25: 61 – 76.Google Scholar
  445. Sudo, S. Z., and Dworkin, M., 1973, Comparative biology of prokaryotic resting cells, Adv. Microbiol. Physiol. 6: 152 – 224.Google Scholar
  446. Suresh, N., Roberts, M. F., Coccia, M., Chikarmane, H. M., and Halvorson, H. O., 1986, Cadmium-induced loss of surface polyphosphate in Acinetobacter lwoffi, FEMS Microbiol. Lett. 36: 91 – 94.Google Scholar
  447. Suresh, N., Warburg, R., Timmerman, M., Wells, J., Coccia, M., Roberts, M. F., and Halvorson, H. O., 1985, New strategies for the isolation of microorganisms responsible for phosphate accumulation, Water Sci. Technol. 17: 99 – 111.Google Scholar
  448. Sussman, A. J., and Gilvarg, C., 1969, Protein turnover in amino-acid-starved strains of Escherichia coliK-12 differing in their ribonucleic acid control, J. Biol. Chem. 224: 6304 – 6306.Google Scholar
  449. Sussman, S., and Halvorson, H. O., 1966, Spores, Their Dormancy and Germination, Harper & Row, New York.Google Scholar
  450. Swedes, J. S., Sedo, R. J., and Atkinson, D. E., 1975, Relation of growth and protein synthesis to the adenylate energy charge in an adenine-requiring mutant of Escherichia coli, J. Biol. Chem. 250: 6930 – 6938.PubMedGoogle Scholar
  451. Szewczyk, E., and Mikucki, J., 1981, Production of α-toxin by starved staphylococci, FEMS Microbiol. Lett.12: 91 – 94.Google Scholar
  452. Szewczyk, E., and Mikucki, J., 1983, Protein A as a substrate of endogenous metabolism in staphylococci, FEMS Microbiol. Lett. 19: 55 – 58.Google Scholar
  453. Szymona, M., 1962, Purification and properties of the new hexokinase utilizing inorganic polyphosphate, Acta Biochim. Polon. 9: 165 – 180.Google Scholar
  454. Szymona, O., and Szumilo, T., 1966, Adenosine triphosphate and inorganic polyphosphate-fructokinases of Mycobacterium phlei, Acta Biochim. Polon. 17: 129 – 143.Google Scholar
  455. Szymona, M., Szymona, O., and Kulesza, S., 1962, On the occurrence of inorganic polyphosphate hexokinase in some microorganisms, Acta Microbiol. Polon. 11: 287 – 300.Google Scholar
  456. Tempest, D. W., 1969, Quantitative relationships between inorganic cations and anionic polymers in growing bacteria, in: Microbial Growth( P. Meadow and S. J. Pirt, eds.), pp. 87 – 111, Cambridge University Press, London.Google Scholar
  457. Tempest, D. W., 1970, The continuous cultivation of micro-organisms. I. Theory of the chemostat, in: Methods in Microbiology, ( J. R. Norris and D. W. Ribbons, eds.), Vol. II, pp. 259 – 276, Academic, London.Google Scholar
  458. Tempest, D. W., and Dicks, J. W., 1967, Inter-relationships between potassium, magnesium, phosphorus and ribonucleic acid in the growth of Aerobacter aerogenesin a chemostat, in: Microbial Physiology and Continuous Culture( E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 140 – 153, HMSO, London.Google Scholar
  459. Tempest, D. W., and Hunter, J. R., 1965, The influence of temperature and pH value on the macromolecular composition of magnesium-limited and glycerol-limited Aerobacter aerogenesgrowing in a chemostat, J. Gen. Microbiol. 41: 267 – 273.PubMedGoogle Scholar
  460. Tempest, D. W., and Neijssel, O. M., 1978, Eco-physiological aspects of microbial growth in aerobic nutrient- limited environments, Adv. Microb. Ecol.2: 105 – 153.Google Scholar
  461. Tempest, D. W., and Strange, R. E., 1966, Variation in content and distribution of magnesium and its influence on survival in Aerobacter aerogenesgrown in a chemostat, J. Gen. Microbiol. 44: 273 – 279.PubMedGoogle Scholar
  462. Tempest, D. W., Neijssel, O. M., and Zevenboom, W., 1983, Properties and performance of micro-organisms in laboratory culture; their relevance to growth in natural ecosystems, in: Microbes in their Natural Environments( J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 119 – 152, Cambridge University Press, London.Google Scholar
  463. ten Brink, B., and Konings, W. N., 1980, Generation of an electrochemical proton gradient by lactate efflux in Escherichia colimembrane vesicles, Eur. J. Biochem. 111: 59 – 66.PubMedGoogle Scholar
  464. ten Brink, B., and Konings, W. N. 1982, The electrochemical proton gradient and lactate concentration gradient in Streptococcus cremorisgrown in batch culture, J. Bacteriol.152: 682 – 686.PubMedGoogle Scholar
  465. Thomas, J. A., Cole, R. E., and Langworthy, T. A., 1976, Intracellular pH measurements with a spectroscopic probe generated in situ, Fed. Proc. 35: 1455.Google Scholar
  466. Thomas, T. D., and Batt, R. D., 1968, Survival of Streptococcus lactisin starvation conditions, J. Gen. Microbiol. 50: 367 – 382.PubMedGoogle Scholar
  467. Thomas, T. D., and Batt, R. D., 1969a, Degradation of cell constituents by starved Streptococcus lactis in relation to survival, J. Gen. Microbiol. 58:347–362.Google Scholar
  468. Thomas, T. D., and Batt, R. D., 1969b, Metabolism of exogenous arginine and glucose by starved Streptococcus lactis in relation to survival, J. Gen. Microbiol. 58:371–380.Google Scholar
  469. Thompson, J., and Chassy, B. M., 1982, Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-Deoxy-D-Glucose uncouples energy production from growth, J. Bacteriol. 151: 1454 – 1465.PubMedGoogle Scholar
  470. Thompson, J., and Thomas, T. D., 1977, Phosphoenolpyruvate and 2-phosphoglycerate: Endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis, J. Bacteriol. 130: 583 – 595.PubMedGoogle Scholar
  471. Thurston, C. F., 1974, Induction and catabolite repression of chondroitinase in batch and chemostat cultures of Proteus vulgaris, J. Gen. Microbiol. 80: 515 – 522.PubMedGoogle Scholar
  472. Tinelli, R., 1955a, Biochemistry of sporulation with Bacillus megaterium. I. Composition of spores obtained by deprivation of different carbohydrate substrates, Ann. Inst. Pasteur 88:212–226.Google Scholar
  473. Tinelli, R., 1955b, Biochemistry of sporulation of Bacillus megaterium. II. Biochemical modifications and gaseous changes accompanying the sporulation provoked by scarcity of glucose, Ann. Inst. Pasteur 88:364–375.Google Scholar
  474. Tomita, K., Saito, T., and Fukui, T., 1983, Bacterial metabolism of poly-β-hydroxybutyrate, in: Biochemistry of Metabolic Processes( D. L. F. Lennon, F. W. Stratman, and R. N. Zahlten, eds.), pp. 353 – 366, Elsevier, Amsterdam.Google Scholar
  475. Torrella, F., and Morita, R. Y., 1981, Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater, Appl. Environ. Microbiol. 41: 518 – 527.PubMedGoogle Scholar
  476. Uryson, S. O., and Kulaev, I. S., 1968, The presence of polyphosphate glucokinase in some bacteria (in Russian), Dokl. Akad. Nauk. SSSR 183: 957 – 959.PubMedGoogle Scholar
  477. Vallee, B. L., 1960, Metal and enzyme interactions: Correlation of composition, function and structure, in: The Enzymes, Vol. 3 ( P. D. Boyer, H. Lardy, and K. Myrback, eds.), pp. 334 – 344, Academic, New York.Google Scholar
  478. van Gemerden, H., 1980, Survival of Chromatium vinosumat low light intensities, Arch. Microbiol. 125: 115 – 121.Google Scholar
  479. Varma, A. K., and Peck, H. D., Jr., 1983, Utilization of short and long-chain polyphosphates as energy sources for the anaerobic growth of bacteria, FEMS Microbiol. Lett. 16: 281 – 285.Google Scholar
  480. Vela, G. R., 1974, Survival of Azotobacter in dry soil, Appl. Microbiol. 28: 77 – 79.PubMedGoogle Scholar
  481. Vela, G. R., and Cagle, G., 1969, Formation of fragile cysts by a strain of Azotobacter chroococcum, J. Gen. Microbiol. 57: 365 – 368.PubMedGoogle Scholar
  482. Veldkamp, H., 1970, Enrichment cultures of prokaryotic organisms, Methods Microbiol. 3A: 305 – 361.Google Scholar
  483. Veldkamp, H., 1976a, Continuous Culture in Microbial Physiology and Ecology, Meadowfield Press, Shildon.Google Scholar
  484. Veldkamp, H., 1976b, Mixed culture studies with the chemostat, in: Continuous Culture. Vol. 6: Applications and New Fields (A. C. R. Dean, D. C. Ellwood, C. G. T. Evans, and J. Melling, eds.), pp. 315–328, Ellis Horwood, Chichester.Google Scholar
  485. Veldkamp, H., 1977, Ecological studies with the chemostat, Adv. Microb. Ecol. 1: 59 – 94.Google Scholar
  486. Veldkamp, H., and Jannasch, H. W., 1972, Mixed culture studies with the chemostat, J. Appl. Chem. Biotechnol. 22: 105 – 123.Google Scholar
  487. Veldkamp, H., and Kuenen, J. G., 1973, The chemostat as a model system for ecological studies, Bull. Ecol. Res. Commun. (Stockh.) 17: 347.Google Scholar
  488. Waddell, W. J., and Butler, T. C., 1959, Calculation of intracellular pH from the distribution of 5,5- dimethyl-2,4-oxazolidinedione (DMO). Application to skeletal muscle of the dog, J. Clin. Invest. 38: 720 – 729.PubMedGoogle Scholar
  489. Walker, D. J., and Forrest, W. W., 1964, Anaerobic endogenous metabolism in Streptococcus faecalis, J. Bacteriol. 87: 256 – 262.PubMedGoogle Scholar
  490. Walker-Simmons, M., and Atkinson, D. E., 1977, Functional capacities and the adenylate energy charge in Escherichia coliunder conditions of nutritional stress, J. Bacteriol. 130: 676 – 683.PubMedGoogle Scholar
  491. Wallace, R. J., 1980, Cytoplasmic reserve polysaccharide of Selenomonas ruminantium, Appl. Environ. Microbiol. 39: 630 – 634.PubMedGoogle Scholar
  492. Wallen, L. L., and Rohwedder, W. K., 1974, Poly-beta-hydroxylakanoate from activated sludge, Environ. Sci. Technol. 8: 576 – 579.Google Scholar
  493. Ward, A. C., Rowley, B. I., and Dawes, E. A., 1977. Effect of oxygen and nitrogen limitation on poly-β- hydroxybutyrate biosynthesis in ammonium-grown Azotobacter beijerinckii, J. Gen. Microbiol. 102: 61 – 68.Google Scholar
  494. Weathers, P. J., Chee, H. L., and Allen, M. M., 1978, Arginine catabolism in Aphanocapsa6308, Arch. Microbiol. 118: 1 – 6.PubMedGoogle Scholar
  495. White, D. C., 1983, Analysis of microorganisms in terms of quantity and activity in natural environments, in: Microbes in their Natural Environments(J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), Cambridge University Press. Symp. Soc. Gen. Microbiol. 34: 37 – 66.Google Scholar
  496. White, D. C., 1986, Quantitative physicochemical characterization of bacterial habitats, in: Bacteria in Nature, Vol. 2 ( J. S. Poindexter and E. R. Leadbetter, eds.), pp. 177 – 203, Plenum, New York.Google Scholar
  497. Whiting, P. H., Midgley, M., and Dawes, E. A., 1976a, The role of glucose limitation in the regulation of the transport of glucose, gluconate and 2-oxogluconate, and of glucose metabolism in Pseudomonas aeruginosa, J. Gen. Microbiol. 92:304–310.Google Scholar
  498. Whiting, P. H., Midgley, M., and Dawes, E. A., 1976b, The regulation of transport of glucose, gluconate and 2-oxogluconate and of glucose catabolism in Pseudomonas aeruginosa, Biochem. J. 154: 659 – 668.Google Scholar
  499. Wiame, J. M., Harpigny, R., and Dothey, R. G., 1959, A new type of Acetobacter: Acetobacter acidophilumprov. sp., J. Gen. Microbiol. 20: 165 – 172.PubMedGoogle Scholar
  500. Willetts, N. S., 1965, Protein degradation during diauxic growth of Escherichia coli, Biochem. Biophys. Res. Commun. 20: 692 – 696.PubMedGoogle Scholar
  501. Wilkinson, J. F., 1959, The Problem of energy-storage compounds in bacteria, Exp. Cell Res. (Suppl.) 7: 111 – 130.Google Scholar
  502. Wilkinson, J. F., and Munro, A. L. S., 1967, The influence of growth limiting conditions on the synthesis of possible carbon and energy storage polymers in Bacillus megaterium, in: Microbial Physiology and Continuous Culture( E. O. Powell, C. G. T. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 173 – 185, HMSO, London.Google Scholar
  503. Williams, S. T., Shameemullah, M., Watson, E. T., and Mayfield, C. I., 1972, Studies on the ecology of actinomycetes in soil. VI. The influence of moisture tension on growth and survival, Soil Biol. Biochem. 4: 215 – 225.Google Scholar
  504. Wimpenny, J. W. T., 1981, Spatial order in microbial ecosystems, Biol. Rev. 56: 295 – 342.Google Scholar
  505. Wimpenny, J. W. T., 1982, Responses of microbes to physical and chemical gradients, Philos. Trans. R. Soc. Lond. [Biol] 297: 497 – 515.Google Scholar
  506. Wimpenny, J.W. T., Lovitt, R. W., and Coombs, J. P., 1983, Laboratory model systems for the investigation of spatially and temporally organised microbial ecosystems, in: Microbes in their Natural Environments, Vol. 34 (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.) Symposia for the Society for General Microbiology, pp. 67 – 117, Cambridge University Press, London.Google Scholar
  507. Winder, F. G., and Denneny, J. M., 1957, The metabolism of inorganic polyphosphate in Mycobacteria, J. Gen. Microbiol 17: 573 – 585.PubMedGoogle Scholar
  508. Winogradsky, S., 1938, Sur la morphologie et l’œcologie des Azotobacter, Ann. Inst. Pasteur 60: 351 – 400.Google Scholar
  509. Wodzinski, R. J., and Frazier, W. C., 1961, Moisture requirements of bacteria. III. Influence of temperature, pH, and malate and thiamine concentration on requirements of Lactobacillus viridescens, J. Bacteriol. 81: 359 – 365.PubMedGoogle Scholar
  510. Wood, H. G., 1977, Some reactions in which inorganic pyrophosphate replaces ATP and serves as a source of energy, Fed. Proc. 36: 2197 – 2205.PubMedGoogle Scholar
  511. Wright, L. F., Milne, D. P., and Knowles, C. J., 1979, The regulatory effects of growth rate and cyclic AMP levels on carbon metabolism and respiration in Escherichia coliK-12, Biochim. Biophys. Acta 583: 73 – 80.PubMedGoogle Scholar
  512. Wright, R. T., 1978, Measurement and significance of specific activity in the heterotrophic bacteria of natural waters, Appl. Environ. Microbiol. 36: 297 – 305.PubMedGoogle Scholar
  513. Yamomoto, T. H., Mevel-Ninio, M., and Valentine, R. C., 1973, Essential role of membrane ATPase or coupling factor for anaerobic growth and anaerobic active transport in Escherichia coli, Biochim. Biophys. Acta 314: 267 – 275.Google Scholar
  514. Zeikus, J. G., 1977, The biology of methanogenic bacteria, Bacteriol. Rev. 41: 514 – 541.PubMedGoogle Scholar
  515. Zevenhuizen, L. P. T. M., 1966, Function, structure and metabolism of the intracellular polysaccharide of Arthrobacter, Meded. Landbouwhogeschool, Wagen. publication No. 66 - 10.Google Scholar
  516. Zevenhuizen, L. P. T. M., and Ebbink, A. G., 1974, Interrelations between glycogen, poly-p-hydroxybutyric acid and lipids during accumulation and subsequent utilization in a Pseudomonas, Antonie van Leeuwen- hoek 40: 103 – 120.PubMedGoogle Scholar
  517. Zimmermann, R., Itturriaga, R., and Becker-Birck, J., 1978, Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration, Appl. Environ. Microbiol. 36: 926 – 935.PubMedGoogle Scholar
  518. Zuber, H., 1979, Structure and function of enzymes from thermophic(sic) microorganisms, in: Strategies of Microbial Life in Extreme Environments( M. Shilo, ed.), pp. 393 – 415, Verlag Chemie, Berlin.Google Scholar
  519. Zychlinsky, E., and Matin, A., 1983, Effect of starvation on cytoplasmic pH, proton motive force, and viability of an acidophilic bacterium, Thiobacillus acidophilus, J. Bacteriol. 153: 371 – 374.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Edwin A. Dawes
    • 1
  1. 1.Department of Applied BiologyUniversity of HullHullEngland

Personalised recommendations