Cognitive Effects of Adrenal Autografting in Parkinson’s Disease

  • Feggy Ostrosky-Solis
  • Ignacio Madrazo
  • Rene Drucker-Colin
  • Luis Quintanar
Part of the Critical Issues in Neuropsychology book series (CINP)


The microsurgical autografting of adrenal medullary tissue to the caudate nucleus has recently been implemented to treat patients with Parkinson’s disease (PD) who are no longer satisfactorily responding to pharmacological treatment. Initial results show significant improvement in the motor symptomatology of these patients (Drucker-Colin et al., 1988; Madrazo et al., 1987).


Nerve Growth Factor Substantia Nigra Caudate Nucleus Adrenal Medulla Rotational Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agid, Y., Ruberg, M., Dubois, B., Pillon, B., Cusimano, G., Raisman, R., Cash, R., Lhermitte, F., & Javoy-Agid, F. (1986). Parkinson’s disease and dementia. Clinical Neuropharmacology, 9, 522–536.Google Scholar
  2. Agid, Y., Javoy-Agid, F., & Ruberg, M. (1987). Biochemistry of neurotransmitters in Parkinson’s disease. In C. D. Marsden & S. Fhan (Eds.), Movement disorders (Vol. 2, pp. 166–230 ). London: Butterworths.Google Scholar
  3. Albert, M. L., Feldman, R. G., & Willis, A. L. (1974). The subcortical dementia of progressive supranuclear palsy. Journal of Neurology, Neurosurgery and Psychiatry, 371, 121–130.CrossRefGoogle Scholar
  4. Backlund, E., Granberg, P., Hamberger, B., Knutson, E., Martenson, A., Sedvall, G., Seiger, A., & Olson, L. (1985). Transplantation of adrenal medullary tissue to the striatum in Parkinsonism. Journal of Neurosurgery, 62, 169–173.PubMedCrossRefGoogle Scholar
  5. Barker, C. F., & Billingham, R. E. (1977). Immunologically privileged sites. Advances in Immunology, 25, 1–54.PubMedCrossRefGoogle Scholar
  6. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., & Seitelberger, F. (1973). Brain dopamine and the syndromes of Parkinson and Huntington: Clinical, morphological and neurochemical correlations. Journal of Neurological Science, 20, 415–455.CrossRefGoogle Scholar
  7. Bjorklund, A., Dunnett, S. B., Stenevi, U., Lewis, M. E., & Iversen, S. D. (1980). Reinnervation of the denervated striatum by substantia nigra transplants: Functional consequences as revealed by pharmacological and sensoriomotor testing. Brain Research, 199, 307–333.PubMedCrossRefGoogle Scholar
  8. Bjorklund, A., & Lindwall, O. (1978). The meso-telencephalic dopamine system: A review of its anatomy. In K. Livingston & O. Hornykiewicz (Eds.), Limbic mechanisms (pp. 307–331 ). New York: Plenum Press.Google Scholar
  9. Bohn, M. C., Marciano, F., Cupit, L., & Gash, D. M. (1987). Adrenal medulla grafts promote recovery of striatal dopaminergic fibers in MPTP treated mice. Science, 247, 913–915.CrossRefGoogle Scholar
  10. Boller, F., Passafiume, D., Keefe, N. C., Rogers, K., Morrow, L., & Kim, Y. (1980). Visuospatial impairment in Parkinson’s disease. Archives of Neurology, 41, 485–490.Google Scholar
  11. Brozoski, T. J., Brown, R. M., Rosvold, H. E., & Goldman, P. S. (1979). Cognitive deficit caused by regional depletion of dopamina in prefrontal cortex of rhesus monkey. Science, 205, 929–932.PubMedCrossRefGoogle Scholar
  12. Carlsson, A., Lindquest, M., & Magnusson, T. (1957). 3–4-dihydroxyphenylalanine and 5hydroxytroptophan as reserpine antagonists. Nature, 180, 1200.Google Scholar
  13. Cools, A. (1980). Role of the neostriatal dopaminergic activity in sequencing and selecting behavioral strategies: Facilitation of processes involved in selecting the best strategy in a stressful situation. Behavioral Brain Research, 1, 361–378.CrossRefGoogle Scholar
  14. Cotzias, G. C., Papavasiliov, P. S., & Gellene, R. (1969). Modification of Parkinson chronic treatment with L-dopa. New England Journal of Medicine, 280, 337–345.PubMedCrossRefGoogle Scholar
  15. Darley, F., Brown, J., & Swenson, W. (1975). Language changes after neurosurgery for Parkin-sonism. Brain and Language, 2, 65–69.PubMedCrossRefGoogle Scholar
  16. DeLong, M. (1974). Motor functions of the basal ganglia single unit activity during movement. In F. D. Schmitt & F. G. Worden (Eds.), The neurosciences (pp. 319–325 ). Third study program. Cambridge, MA: M.I.T. Press.Google Scholar
  17. DeLong, M. R., Georgopulos, A. P., & Crutcher, M. D. (1983). Cortico-basal ganglia relations and coding of motor performance. In Neural coding of motor performance. Experimental brain research (pp. 30–40 ). Berlin: Springer.Google Scholar
  18. Divac, I., Rosvold, H., & Szwarcbart, M. (1967). Behavioral effects of selective ablation of the caudate nucleus. Journal of Comparative Physiology and Psychology, 63, 184–190.CrossRefGoogle Scholar
  19. Drucker-Colin, R., Madrazo, I., Ostrosky-Solis, F., Shkurovich, M., Franco, R., & Torres, C. (1988). Adrenal medullary tissue transplants in the caudate nucleus of Parkinson patients. In J. Sladek & D. Gash (Eds.), Transplants in the central nervous system. Program in brain research. Amsterdam: Elsevier.Google Scholar
  20. Dubois, B., Danze, F., Pillon, B., Cusimano, J., Lhermitte, F., Agid, Y. (1987). Cholinergic dependent cognitive deficits in Parkinson’s disease. Annals of Neurology, 22, 26–30.PubMedCrossRefGoogle Scholar
  21. Dubois, B., Ruberg, M., Javoy-Agid, F., Pluska, A., & Agid, Y. (1983). A subcortical cho-linergic system is affected in Parkinson’s disease. Brain Research, 288, 213–218.PubMedCrossRefGoogle Scholar
  22. Dunnett, S. B., Bjorklund, A., & Stenevi, U. (1983). Dopamine-rich transplants in experimen-tal parkinsonism. Trends in Neuroscience, 6, 266–270.CrossRefGoogle Scholar
  23. Dunnett, S. B., Bjorklund, A., Stenevi, U., & Iversen, S. D. (1981a). Behavioral recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. Brain Research, 215, 147–161.PubMedCrossRefGoogle Scholar
  24. Dunnett, S. B., Bjorklund, A., Stenevi, U., & Iversen, S. D. (1981b). Grafts of embryonic substantia nigra reinnervating the ventrolateral striatum ameliorate sensoriomotor impairments and akinesia in rats with 6–01-IDA lesions of the nigrostriatal pathway. Brain Research, 229, 209–207.PubMedCrossRefGoogle Scholar
  25. Ehringer, H., Hornykiewicz, O. (1960). Verteilung, Von. Noradrenalin and Dopamin (3Hydroxytyramin) im Gehirn des Menschen and ihr Verhalten bei Erkrankungen des Extrapyramidalen Systems. Klinische Wochenschrift, 38, 1236–1239.PubMedCrossRefGoogle Scholar
  26. Elizan, T. S., Sroka, H., Maker, H., Smith, H., & Yahr, M. D. (1986). Dementia in idiophatic Parkinson’s disease. Journal of Neural Transmission, 65, 285–302.PubMedCrossRefGoogle Scholar
  27. Farley, I. J., Price, K. S., & Hornykiewicz, O. (1978). Monominergic systems in the human limbic brain. In K. Livingston & O. Hornykiewicz (Eds.), Limbic mechanisms (pp. 333–349 ). New York: Plenum Press.Google Scholar
  28. Forno, L. S., Langston, J. W., Delanney, L. E., Irwin, I., & Ricaurte, G. A. (1986). Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Annals of Neurology, 20, 449–455.PubMedCrossRefGoogle Scholar
  29. Freed, W. J. (1983). Functional brain tissue transplantation: Reversal of lesion-induced rotation by intraventricular substantia nigra and adrenal medulla grafts with a note on intracranial retinal grafts. Biology and Psychiatry, 18, 1205–1267.Google Scholar
  30. Freed, W. J., Morihisa, J. M., Spoor, E., Hoffer, B. J., Olson, L., Seiger, A., & Wyatt, R. J. (1981). Transplanted adrenal chromaff in cells in rat brain reduce lesion-induced rotational behavior. Nature, 292, 351–352.PubMedCrossRefGoogle Scholar
  31. Freeman, M., & Albert, M. L. (1985). Subcortical dementia. In J. A. M. Frederiks (Ed.), Handbook of clinical neurology. Vol. 46: Clinical neuropsychology (pp. 1049–1052 ). Amsterdam: Elsevier.Google Scholar
  32. Gash, D., Bohn, M., Jiao, S., Fiandaca, M., Okawara, S., Kordower, J., Hansen, J., Notter, M., Snyder, J., Marciano, F., Schwarz, H., & Shoulson, I. ( 1987, October 18). Adrenal medullary implantation promotes recovery of tyrosine hydroxylase immunoreactivity in host striatum of MPTP animal models of parkinsonism. Paper presented at the Symposium on Etiology, Pathogenesis and Prevention of Parkinson’s Disease, San Francisco.Google Scholar
  33. Gasar, P., & Gray, F. (1984). Dementia in idiopathic Parkinson’s disease. Acta Neuropathologica, 64, 43–54.CrossRefGoogle Scholar
  34. Hakim, A. H., & Mathieson, G. (1979). Dementia in Parkinson’s disease: A neuropathological study. Neurology, 29, 1209–1214.PubMedGoogle Scholar
  35. Javoy-Agid, F., & Agid, Y. (1980). Is the mesocortical dopaminergic system involved in Parkinson disease? Neurology, 30, 1326–1330.PubMedGoogle Scholar
  36. Javoy-Agid, F., Ruberg, M., Taquet, H., Bukobza, B., Agid, Y., & Gaspar, P. (1984). Biochemical neuropathology of Parkinson’s disease. Advances in Neurology, 40, 189–198.PubMedGoogle Scholar
  37. Johnston, T. N., Rosvold, H. E., & Mishkin, M. (1968). Proyections from behaviorally defined sectors of the prefrontal cortex to the basal ganglia, septum and diencephalon of the monkeys. Experimental Neurology, 21, 20–30.CrossRefGoogle Scholar
  38. Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic parkinsonism in human due to a product of meperidine-analog synthesis. Science, 219, 979–980.PubMedCrossRefGoogle Scholar
  39. Lees, A. J., & Smith, E. (1983). Cognitive deficits in the early stages of Parkinson’s disease. Brain, 106, 257–270.PubMedCrossRefGoogle Scholar
  40. Lieberman, A. N. (1974). Parkinson’s disease: A clinical review. American Journal of Medical Science, 267, 66–80.CrossRefGoogle Scholar
  41. Lieberman, A., Dziatolowski, M., Kupersmith, M., Serby, M., Goodgold, A., Korein, J., & Goldstein, M. (1979). Dementia in Parkinson’s disease. Annals of Neurology, 6, 355–359.PubMedCrossRefGoogle Scholar
  42. Lindvall, O., Backlund, E., Farde, L., Freedman, R., Hoffer, B., & Seiger, A. (1987). Transplantation in Parkinson’s disease: Two cases of adrenal medullary grafts to the putamen. Annals of Neurology, 22, 457–468.PubMedCrossRefGoogle Scholar
  43. Luria, A. R. (1977). Las funciones corticales superiores en el hombre. La Habana: Orbe.Google Scholar
  44. Madrazo, I., Drucker-Colin, R., Diaz, V., Martinez-Mata, J., Torres, C., & Becerril, J. (1987). Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. New England Journal of Medicine, 316, 831–834.PubMedCrossRefGoogle Scholar
  45. Matison, R., Mayeux, R., Rosen, J., & Fahn, S. (1982). Tip of the tongue phenomenon in Parkinson’s disease. Neurology, 32, 567–570.PubMedGoogle Scholar
  46. Mortimer, J. A., Pirozzolo, F. J., Hansch, E. C., & Webster, D. D. (1982). Relationship of motor symptoms to intellectual deficits in Parkinson’s disease. Neurology, 32, 133–137.PubMedGoogle Scholar
  47. Ostrosky-Solis, F., Canseco, E., Quintanar, L., Navarro, E., Meneses, S., & Ardila, A. (1985). Sociocultural effects in neuropsychological assessment. International Journal of Neuroscience, 27, 53–66.PubMedCrossRefGoogle Scholar
  48. Ostrosky-Solis, F., Quintanar, L., Madrazo, I., Drucker-Colin, R., Franco-Bourland, R., & Leon-Meza, V. (1988). Neuropsychological effects of brain autograft of adrenal medullary tissue for the treatment of Parkinson’s disease. Neurology, 38, 1442–1450PubMedGoogle Scholar
  49. Ostrosky-Solis, F., Quintanar, L., Meneses, S., Canseco, E., Navarro, E., & Ardila, A. (1986). Actividad cognoscitiva y nivel sociocultural. Revista de Investigacion Clinica, 38, 37–42.Google Scholar
  50. Perlow, M. J. (1987). Brain grafting as a treatment for Parkinson’s disease. Neurosurgery, 20, 335–342.PubMedCrossRefGoogle Scholar
  51. Perlow, M. J., Freed, W. J., Haffer, B. J., Seiger, A., Olson, L., & Wyatt, R. J. (1979). Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science, 204, 635–645.CrossRefGoogle Scholar
  52. Pirozzolo, F. J., Hansch, C., & Mortimer, J. A. (1982). Dementia in Parkinson’s disease: Neuropsychological analysis. Brain and Cognition, 1, 71–83.PubMedCrossRefGoogle Scholar
  53. Ramon y Cajal, S. (1938). Degeneration and regeneration of the nervous system. London: Oxford University Press.Google Scholar
  54. Riklan, M., & Levita, E. (1970). Psychological studies of thalamic lesions in humans. Journal of Nervous and Mental Disease, 150, 251–265.PubMedCrossRefGoogle Scholar
  55. Rinne, U. K. (1982). Brain neurotransmitter receptors in Parkinson’s disease. In C. D. Mar-sden & S. Pahn (Eds.), Movement disorders (pp. 59–74 ). London: Butterworths.Google Scholar
  56. Rosvold, H. E. (1972). The frontal lobe system: Cortical subcortical interrelationships. Acta Neurobiologica Experimentalis, Warsaw, 32, 439–460.Google Scholar
  57. Scatton, B., Rouquier, L., Javoy-Agid, F., & Agid, Y. (1982). Dopamine deficiency in the cerebral cortex in Parkinson disease. Neurology, 32, 1039–1040.PubMedGoogle Scholar
  58. Selby, G. (1967). Stereotactic surgery for the relief of Parkinson’s disease. Part I. A critical review. Journal of the Neurological Sciences, 5, 315–342.PubMedCrossRefGoogle Scholar
  59. Stern, Y., & Langston, J. W. (1985). Intellectual changes in patients with MPTP induced Parkinsonism. Neurology, 35, 1506–1509.PubMedGoogle Scholar
  60. Taylor, A. E., Saint-Cyr, J. A., & Lang, A. E. (1986). Frontal lobe dysfunction in Parkinson’s disease. The cortical focus of neostriatal outflow. Brain, 109, 845–883.PubMedCrossRefGoogle Scholar
  61. Taylor, A. E., Saint-Cyr, J. A., & Lang, A. E. (1987). Parkinson’s disease: Cognitive changes in relation to treatment response. Brain, 110, 35–51.PubMedCrossRefGoogle Scholar
  62. Teuber, H., & Proctor, F. (1964). Some effects of basal ganglia lesions in subhuman primates and man. Neuropsychologia, 2, 85–93.CrossRefGoogle Scholar
  63. Uhl, G. R., Hedreen, J. C., & Price, D. L. (1985). Parkinson’s disease: Loss of neurons from the ventral tegmental area contralateral to therapeutic surgical lesions. Neurology, 35, 1215–1218.PubMedGoogle Scholar
  64. Ungerstedt, U. (1971a). Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiologica Scandinavica Supplementum, 367, 95–122.PubMedGoogle Scholar
  65. Ungerstedt, U. (1971b). Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behavior. Acta Physiologica Scandinavica Supplementum, 367, 49–68.PubMedGoogle Scholar
  66. Unsicker, K., Rieffert, B., & Ziegler, W. (1980). Effects of cell culture condition, nerve growth factor, dexamethasone and cyclic AMP on adrenal chromaffin cells in vitro. In O. Eranko, S. Soinila, & H. Paivarento (Eds.), Histochemistry and cell biology of autonomic neurons, SIF cells, and paraneurons (pp. 51–59 ). New York: Raven Press.Google Scholar
  67. Villardita, T., Smirni, P., Le Pera, F., Zappala, G., & Nicoletti, F. (1982). Mental deterioration, visuoperceptive disability and constructional apraxia in Parkinson’s disease. Acta Neurologica Scandinavica, 66, 112–120.PubMedCrossRefGoogle Scholar
  68. Wurtman, R. J., Pohorecky, L. A., & Baliga, B. S. (1972). Adrenocortical control of the biosynthesis of epinephrine and protein in the adrenal medulla. Pharmacological Review, 24, 411–426.Google Scholar
  69. Zetusky, W., Jankovic, J., & Pirozzolo, F. (1985). The heterogeneity of Parkinson’s disease: Clinical and prognostic implications. Neurology, 35, 522–526.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Feggy Ostrosky-Solis
    • 1
  • Ignacio Madrazo
    • 2
  • Rene Drucker-Colin
    • 3
  • Luis Quintanar
    • 1
  1. 1.Department of Psychophysiology, Faculty of PsychologyNational University of MexicoMexico D.F.Mexico
  2. 2.Department of NeurosurgerySpecialties Hospital, Centro Medico “La Raza,” IMSSMexico D.F.Mexico
  3. 3.Department of Neurosciences, Institute of Cellular PhysiologyNational University of MexicoMexico D.F.Mexico

Personalised recommendations