Structures and Electronic Properties of Epitaxial Silicon-Silicide Interfaces

  • D. R. Hamann
Part of the NATO ASI Series book series (NSSB, volume 195)


Of all the known metal-semiconductor interfaces, those between the transition-metal silicides NiSi2 and CoSi2 and Si are the best characterized. This is because these silicides grow pseudomorphically on Si, and form atomically abrupt interfaces with a low defect density. Because they are pseudomorphic, they offer the opportunity to understand the atomic geometry of the interface in complete detail. This, in turn, permits detailed theoretical study of the electronic properties of these interfaces at a level not possible for other metal-semiconductor systems. These Schottky-barrier systems are on a par with, or perhaps better than, molecular-beam-epitaxy-grown semiconductor heterostructures in their degree of perfection.


Schottky Barrier Schottky Barrier Height Linear Augmented Plane Wave Linear Augmented Plane Wave Method Valence Charge Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hohenberg and W. Ivohn, Phys. Rev. 136 B864 (1964); W. Kohn and L. J. Sham, ibid. 140 (1965) Al133.Google Scholar
  2. 2.
    O. K. Andersen, Phys. Rev. B 12 (1975) 3060.ADSCrossRefGoogle Scholar
  3. 3.
    L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 33, 823 (1986).ADSCrossRefGoogle Scholar
  4. 4.
    R. T. Tung, J. M. Gibson, and J. M. Poate, Phys. Rev. Lett. 50, 429 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    K. N. Tu, Appl. Phys. Lett. 27, 221 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    N. W. Cheung and J. W. Mayer, Phys. Rev. Lett 46, 671 (1981).ADSCrossRefGoogle Scholar
  7. 7.
    P. J. Grunthaner, F. J. Grunthaner, A. Madhukar, and J. W. Mayer, J. Vac. Sci. Technol. 19, 649 (1981).ADSCrossRefGoogle Scholar
  8. 8.
    Y. J. Chang and J. L. Erskine, Phys. Rev. B 26, 4776 (1982).Google Scholar
  9. 9.
    F. Comin, J. E. Rowe, and P. H. Citrin, Phys. Rev. Lett. 51, 2402 (1983).ADSCrossRefGoogle Scholar
  10. 10.
    D. R. Hamann and L. F. Mattheiss, Phys. Rev. Lett. 54, 2517 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    G. V. Samsonov and I. M. Vinitskii, Handbook of Refractory Compounds, translated by Iv. Shaw (Plenum, New York, 1980), p. 131.Google Scholar
  12. 12.
    D. Cherns, G. R. Anstis, J. L. Hutchinson, and J. C. H. Spence, Philos. Mag. A 46, 849 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    J. M. Gibson, J. C. Bean, J. M. Poate, and R. T. Tung, Appl. Phys. Lett. 41, 818 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    E. Vlieg, A. E. M. J. Fischer, J. F. van der Veen, B. N. Dev, and G. Materlik, Surface Sci. 178, 36 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    A. E. M. J. Fischer, E. Vlieg, J. F. van der Veen, M. Clausnitzer, and G. Materlik, Phys. Rev. B 36, 4769 (1987).ADSCrossRefGoogle Scholar
  16. 16.
    J. Zegenhagen, K. G. Huang, B. D. Hunt, and L. J. Schowalter, Appl. Phys. Lett. 51, 1176 (1987).ADSCrossRefGoogle Scholar
  17. 17.
    E. J. van Loenen, J. W. M. Frenken, J. F. van der Veen, and S. Valeri, Phys. Rev. Lett. 54, 827 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    A. E. M. J. Fischer, T. Gustafsson, and J. F. van der Veen, Phys. Rev. B 37, 6305 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    Y. J. Chabal, D. R. Hamann, J. E. Rowe, and M. Schliiter, Phys. Rev. B 25, 7198 (1982).Google Scholar
  20. 20.
    L. F. Mattheiss and D. R. Hamann, Phys. Rev. B. 37, 10623, (1988).CrossRefGoogle Scholar
  21. 21.
    D. R. Hamann, Phys. Rev. Lett. 60, 313 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    J. Tersoff and D. R. Hamann, Phys. Rev. B 28, 1168 (1983).ADSCrossRefGoogle Scholar
  23. 23.
    P. J. van den Floek, W. Ravenek, and E. J. Baerends, Phys. Rev. Lett. 60, 1743 (1988).ADSCrossRefGoogle Scholar
  24. 24.
    R. T. Tung, Phys. Rev. Lett. 52, 462 (1984); J. Vac. Sci. Technol. B2, 465 (1984).Google Scholar
  25. 25.
    R. W. Godby, M. Schliiter, and L. J. Sham, Phys. Rev. Lett. 56, 2415 (1986).ADSCrossRefGoogle Scholar
  26. 26.
    J. Tersoff and D. R. Hamann, unpublished.Google Scholar
  27. 27.
    G. P. Das, P. Blochel, N. E. -Christensen, and O. K. Andersen, to be published; Also see these proceedings, I. P. Batra, Editor.Google Scholar
  28. 28.
    M. D. Stiles and D. R. Hamann, to be published.Google Scholar
  29. 29.
    A. F. J. Levi, R. T. Tung, J. L. Batstone, and M. Anzlowar, Proc. Mat. Res. Soc. Symp. Proc. 107, 259 (1988).CrossRefGoogle Scholar
  30. 30.
    Y. J. Chang and J. L Erskine, Phys. Rev. B 26, 7031 (1982).ADSCrossRefGoogle Scholar
  31. 31.
    G. Gewinner, C. Pirn, J. C. Peruchetti, D. Bolmont, J. Derrien, and P. Thiry, Phys. Rev. B. 38, 1879 (1988).ADSCrossRefGoogle Scholar
  32. 32.
    A. F. J. Levi, private communication.Google Scholar
  33. 33.
    M. D. Stiles and D. R. Hamann, Phys. Rev. B 38, 2021 (1988).ADSCrossRefGoogle Scholar
  34. 34.
    G. Wachutka, Phys. Rev. B 34, 8512 (1986).ADSCrossRefGoogle Scholar
  35. 35.
    M. D. Stiles and D. R. Hamann, to be published.Google Scholar
  36. 36.
    J. F. Morar and M. Witmer, Phys. Rev. B 37, 2618 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • D. R. Hamann
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations