# Hidden Symmetries Of A Self-Dual Monopole

• L. Fehér
• P. Horváthy
• L. O’Raifeartaigh

## Abstract

A self-dual (SD) SU(2) monopolé is a static solution of the first order Bogomolny1 equations
$${{D}_{k}}\Phi = {{B}_{k}}\left( { = \frac{1}{2}{{ \in }_{{kij}}}{{F}_{{ij}}}} \right)$$
(1)
The monopole’s field can be identified with a pure Yang-Mills configuration A0 = 0, A k , A 4 = Φ in (1+4)-dimensional flat space which does not depend on the coordinates x and x 4. The Dirac equation
$$i\frac{{\partial \Phi }}{{\partial {{x}^{0}}}} = i{{\gamma }^{0}}{{\not{D}}_{4}}\Psi$$
(2)
plays a decisive role2,3,4 in describing the fluctuations around a SD monopole. Here we are interested in the symmetries of the 4-dimensional, Euclidean Dirac operator
$${{\not{D}}_{4}} = {{\gamma }^{k}}{{D}_{k}} + {{\gamma }^{4}}{{D}_{4}} = \frac{{\sqrt {2} }}{i}\left( {\begin{array}{*{20}{c}} 0 & Q \\ {{{Q}^{ + }}} & 0 \\ \end{array} } \right),$$
(3)
where
$$Q = \frac{1}{{\sqrt {2} }}\left( {\Phi \cdot {{1}_{2}} - i\vec{\pi }\cdot \vec{\sigma }} \right),\quad \vec{\pi } = - i\vec{D} = - i\vec{\nabla } - {{\vec{A}}^{a}}{{I}_{a}},\quad {{D}_{4}} = \frac{\partial }{{\partial {{x}^{4}}}} - i{{\Phi }^{a}}{{I}_{a}}$$
(4)
We use the following γ-matrices:
$${{\gamma }^{k}} = \left( {\begin{array}{*{20}{c}} 0 & {i{{\sigma }^{k}}} \\ { - i{{\sigma }^{k}}} & 0 \\ \end{array} } \right),{{\gamma }^{4}} = \left( {\begin{array}{*{20}{c}} 0 & {{{1}_{2}}} \\ {{{1}_{2}}} & 0 \\ \end{array} } \right),{{\gamma }^{0}} = i{{\gamma }^{5}} = i\left( {\begin{array}{*{20}{c}} {{{1}_{2}}} & 0 \\ 0 & { - {{1}_{2}}} \\ \end{array} } \right).$$
(5)
The Ia (a = 1,2,3) are the standard isospin matrices in some representation and we suppose that nothing depends on the extra coordinate x4.

Cisneros

## Preview

### References

1. 1.
For a review, see P. Goddard and D. Olive, Rep. Prog. Phys. 41: 1357 (1978).Google Scholar
2. 2.
L. S. Brown, R. D. Carlitz and C. Lee, Phys. Rev. D16.-417 (1977).Google Scholar
3. 3.
R. Jackirv and C. Rebbi, Phys. Rev. D13: 3398 (1976).Google Scholar
4. 4.
F. A. Bais and W. Froost, Nucl. Phys. B178: 125 (1981).Google Scholar
5. 5.
E. Weinberg, Phys. Rev. D20: 936 (1979)Google Scholar
6. 6.
K. J. Bieble and J. Wolf, Nucl. Phys. B279: 571 (1987).Google Scholar
7. 7.
J. F. Schönfeld, Journ. Math. Phys. 21:2528 (1980). L. Gy Fehér, J. Phys. A19:1259 (1986). G. W. Gibbons and P. Ruback, Commun. Math. Phys. 115: 226 (1988).Google Scholar
8. 8.
D. Zwanziger, Phys. Rev. 176: 1480 (1968).Google Scholar
9. 9.
H. V. McIntosh and A. Cisneros, Journ. Math. Phys. 11: 896 (1970).Google Scholar
10. 10.
E. D’Hoker and L. Kinet, Phys. Rev. Lett. 55:1043 (1985); Lett. Math. Phys. 12: 71 (1986)Google Scholar
11. 11.
. L. Gy Fehér and P. A. Horváthy, Mod. Phys. Lett. A (to be published ) (1988).Google Scholar
12. 12.
. W. Pauli, Z. Phys. 36: 33 (1926).Google Scholar

© Plenum Press, New York 1989

## Authors and Affiliations

• L. Fehér
• 1
• 2
• P. Horváthy
• 2
• 3
• L. O’Raifeartaigh
• 2
1. 1.Bolyai Institute, JateSzegedHungary
2. 2.Dublin Institute for Advanced StudiesDublinIreland
3. 3.Maths. Dept., UniversitéMetzFrance