Advertisement

Dynamical Symmetry of the Kaluza-Klein Monopole

  • L. Gy Fehér
  • P. A. Horvàthy

Abstract

One of the oldest and most enduring ideas regarding the unification of gravitation and gauge theory is Kaluza’s five dimensional unified theory. Kaluza’s hypothesis was that the world has four spatial dimensions, but one of the dimensions has curled up to form a circle so small as to be unobservable. He showed that ordinary general relativity in five dimensions, assuming such a cylindrical ground state, contained a local U(1) gauge symmetry arising from the isometry of the hidden fifth dimension. The extra components of the metric tensor constitutes the gague fields of this symmetry and could be identified with the electromagnetic vector potential.

Keywords

Angular Momentum Dynamical Symmetry Conformal Algebra Scattering State Killing Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kaluza T 1916, Sitzunbgsber. Preus. Akad. Wiss. Phys. Math. K1, 996;Google Scholar
  2. Klein O 1926 Z. Phys.37, 895ADSCrossRefGoogle Scholar
  3. 2.
    Gross D J and Perry M J 1983 Nucl. Phys.B226. 29;MathSciNetADSCrossRefGoogle Scholar
  4. Sorkin R 1983 Phys. Rev. Lett.51, 87MathSciNetADSCrossRefGoogle Scholar
  5. 3.
    Brans C and Dicke R H 1961 Phys. Rev.124. 95MathSciNetCrossRefGoogle Scholar
  6. 4.
    Misner C W 1963 Journ. Math. Phys.4, 924MathSciNetADSCrossRefGoogle Scholar
  7. 5.
    Manton N S 1982 Phys. Lett.110B. 54;MathSciNetADSGoogle Scholar
  8. Atiyah M F and Hitchin N J 1988 The Geometry and Dynamics of Magnetic Monopoles. Princeton University Press;MATHGoogle Scholar
  9. Temple-Raston M 1988 Cambridge Preprint DAMTP-88/15;Google Scholar
  10. 6.
    Gibbons G W and Manton N S 1986 Nucl. Phys.B274.183;MathSciNetADSCrossRefGoogle Scholar
  11. Feher L Gy and Horvathy P A 1987 Phys. Lett.182B. 183;Google Scholar
  12. 7.
    DeWitt B 1957 Rev. Mod. Phys.29, 377MathSciNetADSMATHCrossRefGoogle Scholar
  13. 8.
    Carter B 1977 Phys. Rev.D16. 3395ADSGoogle Scholar
  14. 9.
    Pauli W 1926 Z. Phys.36, 33Google Scholar
  15. 10.
    Fehér L Gy and Horváthy PA 1988 Mod. Phys. Lett. AGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • L. Gy Fehér
    • 1
  • P. A. Horvàthy
    • 2
  1. 1.JATEBolyai IntézetSzegedHungary
  2. 2.Dipartimento di FisicaUniversità di Napoli Mostra d’OltremareNapoliItaly

Personalised recommendations