Recent Progress in Implementing the Tensor Operator Calculus *,**

  • L. C. Biedenharn
  • R. Le Blanc
  • J. D. Louck


We are indebted to the organizers of the conference and especially Professor Bruno Gruber for this opportunity to review recent progress in implementing the tensor operator calculus. This subject is fundamental for the symmetry approach to quantum physics, and-as is well-known-has extensive applications to nuclear structure physics, nuclear collective motion and quark models in particle physics, to name only a few of the more important examples.


Matrix Element Quantum Group Null Space Tensor Operator Operator Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. . J.D. Louck and L. C. Biedenharn, “Some Properties of the Intertwining Number of the General Linear Group”, in Science and Computers, Adv. Math. Supp. Studies, 10 (1986), 265 – 311.Google Scholar
  2. . K. Baclawski, Adv. in Appl Math. 5 (1984) 416 – 432.Google Scholar
  3. . J. Deenen and C. Quesne, J. Math. Phys. 25 (1984) 2638, 2354.Google Scholar
  4. . K.T. Hecht, The Vector Coherent State Method and Its Application to Problems of Higher Symmetries, Lecture Notes in Physics 290, Springer-Verlag, Berlin, (1987).Google Scholar
  5. 4.
    . K.T. Hecht, R. Le Blanc and D.J. Rowe, J. Phys. A: Math. Gen. 20 (1987) 2241.ADSMATHCrossRefGoogle Scholar
  6. 5.
    D.J. Rowe, R. Le Blanc and K.T. Hecht, J. Math. Phys. 29 (1988) 287.MathSciNetADSMATHCrossRefGoogle Scholar
  7. R. Le Blanc and K. T. Hecht, J. Phys. A: Math. Gen. 20 (1987) 4613;Google Scholar
  8. 7.
    R. Le Blanc, J. Phys. A: Math. Gen. 20 (1987) 5015.MathSciNetADSMATHCrossRefGoogle Scholar
  9. R. Le Blanc and L. C. Biedenharn, ”Implementation of a U(n) Wigner-Racah calculus in a vector coherent state Hilbert space,“ to be published in J. Phys. A: Math. Gen.Google Scholar
  10. A.U. Klimyk and I.I. Kachurik, ”;Infinitesimal operators of group representations in noncanonical bases,“ to be published in J. Math. Phys.Google Scholar
  11. S. Alisauskas, “On biorthogonal and orthonormal Clebsch-Gordan coefficients of SU (3): Analytical and algebraic approaches,” to be published in J. Math. Phys.Google Scholar
  12. 11.
    I.M. Gel’fand and A.V. Zelevinsky, Societé Math, de France, Astérique, hors série (1985) 117 – 128.Google Scholar
  13. 12.
    G.E. Baird and L.C. Biedenharn J. Math. Phys. 4 (1963) 1449.MathSciNetADSCrossRefGoogle Scholar
  14. 13.
    J.D. Louck, Amer. Journ. of Phys. 38 (1970) 3.MathSciNetADSCrossRefGoogle Scholar
  15. 14.
    L.C. Biedenharn, J.D. Louck, and A. Giovannini J. Math. Phys. 8 (1967) 691.MathSciNetADSCrossRefGoogle Scholar
  16. 15.
    D. Flath and L.C. Biedenharn, Can. J. Math 37 (1985) 710.MathSciNetMATHCrossRefGoogle Scholar
  17. L.C. Biedenharn and D. Flath, Commun. Math. Phys. 93 (1984) 143.MathSciNetADSMATHCrossRefGoogle Scholar
  18. 16.
    J.D. Louck and L.C. Biedenharn J. Math. Phys. 11 (1970) 2368.MathSciNetADSMATHCrossRefGoogle Scholar
  19. 17.
    L.C. Biedenharn and J.D. Louck, Commun. Math. Phys. 8 (1968) 89.MathSciNetADSCrossRefGoogle Scholar
  20. J.D. Louck and L.C. Biedenharn, to be submitted for publication.Google Scholar
  21. 19.
    J.D. Louck and L.C. Biedenharn J. Math. Phys. 14 (1973) 1336.MathSciNetADSCrossRefGoogle Scholar
  22. 20.
    G.W. Mackey, Induced representations of groups and Quantum Mechanics, W.A. Benjamin, Inc., NY, (1968).Google Scholar
  23. L.C. Biedenharn and J.D. Louck, ”The Racah-Wigner Algebra in Quantum Theory“, Vol. 9 Ency. of Math, and Appl. (G.-C. Rota, Ed.), Addison-Wesley (Reading MA) 1981. Cf. Chap. 4, ”W-algebra: An Algebra of Invariant Operators“.Google Scholar
  24. 22.
    B. Hasslacher and M.J. Perry, Phys. Lett. 103B (1981), 21 – 24.MathSciNetADSGoogle Scholar
  25. V.G. Drinfel’d, “Hopf algebras and the quantum Yang-Baxter equations,” Sov. Math. Dokl. 32 (1985) 254; “Quantum Groups” ICM publications (1986), 798.Google Scholar
  26. 24.
    G.M. Bergman, Contemporary Mathematics 43 (1985) 25 – 48.MathSciNetADSGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • L. C. Biedenharn
    • 1
    • 2
  • R. Le Blanc
    • 3
  • J. D. Louck
    • 4
  1. 1.Department of PhysicsDuke UniversityDurhamUSA
  2. 2.Department of PhysicsUniversity of TexasAustinUSA
  3. 3.Department of PhysicsMcGill UniversityMontrealCanada
  4. 4.Theoretical DivisionLos Alamos National LaboratoryUSA

Personalised recommendations