Update on Bile Formation and on Mechanism of Bile Acid-Induced Cholestasis

  • Claude C. Roy
  • Beatriz Tuchweber
  • Andrée M. Weber
  • Ibrahim M. Yousef
Part of the Topics in Gastroenterology book series (TGEN)


In its broadest sense cholestasis may be defined as a decrease or failure of bile formation and/or secretion. This results in the hepatic and systemic accumulation of certain components that are normally secreted into bile, such as bilirubin, bile acids, cholesterols, and liver enzymes.1–4 Although bile flow is affected when the biliary tree is obstructed, the term cholestasis is increasingly reserved for those conditions in which anatomic and functional integrity of the biliary tree and gallbladder is preserved.


Bile Acid Bile Salt Cholic Acid Bile Flow Intrahepatic Cholestasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sherlock S. Cholestasis. In: Diseases of the Liver and Biliary System, 7th ed. Oxford: Black-well Scientific, 1985, pp. 214–245.Google Scholar
  2. 2.
    Tuchweber B, Weber A, Roy CC, Yousef IM. Mechanisms of experimentally induced intrahepatic cholestasis. In: Progress in Liver Disease, Vol 3 (Popper m, Schaffner F, eds). Orlando: Grune and Stratton, 1986, pp. 164–178.Google Scholar
  3. 3.
    Oelberg DG, Lester R. Cellular mechanisms of cholestasis. Ann Rev Med 1986;37:297–317.PubMedCrossRefGoogle Scholar
  4. 4.
    Phillips MJ, Poucell S, Oda M. Mechanisms of cholestasis. Lab Invest 1986;54:593–608.PubMedGoogle Scholar
  5. 5.
    Boyer J. Mechanism of bile secretion and transport. In: Progress in Liver Disease, Vol 8 (Popper M, Schaffner F, eds). Orlando: Grune and Stratton, 1986, pp. 609–636.Google Scholar
  6. 6.
    Carey MC. The enterohepatic circulation. In: The Liver: Biology and Pathobiology (Arias I, Popper H, Schacter D, Shafritz DA, eds). New York: Raven press, 1982, p. 429.Google Scholar
  7. 7.
    Strange RC. Hepatic bile flow. Physiol Rev 1984;64:1055–1102.PubMedGoogle Scholar
  8. 8.
    Sperber I. Biliary secretion of organic anions and its influence on bile flow. In: The Biliary System (Taylor W, ed). Oxford: Blackwell, 1965, pp. 457–467.Google Scholar
  9. 9.
    Graft J, Peterlik M. Mechanism of transport of inorganic ions into bile. In: The Hepatobiliary System: Fundamental and Pathological Mechanisms (Taylor W, ed). New York: Plenum Press, 1975, pp. 43–58.Google Scholar
  10. 10.
    Rappaport AM. The microcirculatory hepatic unit. Microvasc Res 1973; 6:212–228.PubMedCrossRefGoogle Scholar
  11. 11.
    Gumucio JJ, Miller DL. Functional implications of liver cell heterogeneity. Gastroenterology 1981;80:393–403.PubMedGoogle Scholar
  12. 12.
    Layden TJ, Boyer JL. Influence of bile acids on bile canalicular size. Lab Invest 1978;39:110–119.PubMedGoogle Scholar
  13. 13.
    Layden TJ, Boyer JL. Recruitment of central lobular hepatocytes for bile acid-dependent bile secretion. In: Biological Effects of Bile Acids (Paumgartner G, Strehl A, Gerok W, eds). Lancaster, UK: MTP, 1979, pp. 3–9.Google Scholar
  14. 14.
    Gumucio JJ, Balabaud C, Miller DL, Demason LJ, Appelman HD, Stoecker TJ, Franzblaud DR. Bile secretion and liver cell heterogeneity in the rat. J Lab Clin Med 1978;91:350–362.PubMedGoogle Scholar
  15. 15.
    Jones AL, Hradek GT, Renston RH, Wong KW, Karlaganis G, Paumgartner G. Autoradiographic evidence for hepatic lobular concentration gradient of bile acid derivative. Am J Physiol 1980;238:G233–G237.PubMedGoogle Scholar
  16. 16.
    Shaffer EA, Zahavi I, Gall G. Postnatal development of hepatic bile formation in the rabbit. Dig Dis Sci 1985;30:558–563.PubMedCrossRefGoogle Scholar
  17. 17.
    Suchy FJ, Balistreri WF, Schockey JR, Garfield SA. Absence of a hepatic lobular gradient for bile acid uptake in the suckling rat. Hepatology 1983;3:847.Google Scholar
  18. 18.
    O’Maille ERL, Richards TG, Short AH. The influence of conjugation of cholic acid on its uptake and secretion: Hepatic extraction of taurocholate and cholate in the dog. J Physiol London 1967;189:337–350.PubMedGoogle Scholar
  19. 19.
    Smallwood RA, Iser JH, Hoffman NE. The hepatic transport of conjugated and unconjugated bile acid studied simultaneously in the rat. In: Advances in Bile Acid Research (Matern S, Hackenschmidt J, Back P, Gerok W, eds). Stuttgart: Schattauer, 1975, pp. 229–232.Google Scholar
  20. 20.
    Strange RC, Nimmo IA, Percy-Robb IW. Studies in the rat on the hepatic subcellular distribution and biliary excretion of lithocholic acid. Biochim Biophys Acta 1979;588:70–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Schwarz LR, Burr R, Schwenk M, Pfaff E, Greim H. Uptake of taurocholic acid into isolated rat-liver cells. Eur J Biochem 1975;55:617–623.PubMedCrossRefGoogle Scholar
  22. 22.
    Reichen J, Paumgartner G. Uptake of bile acids by perfused rat liver. Am J Physiol 1976;231:734–742.PubMedGoogle Scholar
  23. 23.
    Strange RC, Hume R, Eadington DW, Nimmo IA. Distribution of glycocholate in blood from human fetuses and adults. Pediatr Res 1981;15:1425–1428.PubMedCrossRefGoogle Scholar
  24. 24.
    Rudman D, Kendall FE. Bile acid content of human serum. II. The binding of cholanic acids by human plasma proteins. J Clin Invest 1957;36:538–542.PubMedCrossRefGoogle Scholar
  25. 25.
    Burke CW, Lewis B, Panveliwalla D, Tabaqchali S. The binding of cholic acid and its taurine conjugate to serum proteins. Clin Chim Acta 1971;32:207–214.PubMedCrossRefGoogle Scholar
  26. 26.
    Roda A, Cappelleri G, Aldini R, Roda E, Barbara L. Quantitative aspects of the interaction of bile acids with human serum albumin. J Lipid Res 1982;23:490–495.PubMedGoogle Scholar
  27. 27.
    Delahunty T, Feldkamp T. A study of endogenous N-cholylglycine distribution among serum proteins using radioimmunoassay. Steroids 1980;36:439–449.PubMedCrossRefGoogle Scholar
  28. 28.
    Shand DG, Gotham RH, Wilkinson GR. Perfusion-limited effects of plasma drug binding on hepatic drug extraction. Life Sci 1976;19:125–130.PubMedCrossRefGoogle Scholar
  29. 29.
    Wilkinson GR, Shand DG. A physiological approach to hepatic drug clearance. Clin Pharmacol Ther 1975;18:377–390.PubMedGoogle Scholar
  30. 30.
    Forker EL, Luxon BA. Albumin helps mediate removal of taurocholate by rat liver. J Clin Invest 1981;67:1517–1522.PubMedCrossRefGoogle Scholar
  31. 31.
    Ockner R, Weisigner R, Lysenko N. Specific and saturable binding of 125I-albumin to rat hepatocytes: Further evidence for a surface membrane albumin receptor (abstract). Gastroenterology 1980;79:1041.Google Scholar
  32. 32.
    Weisigner R, Gollan J, Ockner R. An albumin receptor on the liver cell may mediate hepatic uptake of sulfobromophthalein and bilirubin: Bound ligand, not free, is the major uptake determinant. Gastroenterology 1980;79:1065.Google Scholar
  33. 33.
    Ruifrock PG, Meijer DKF. Sodium ion-coupled intake of taurocholate by rat liver plasma membrane vesicles. Liver 1982;2:28–34.Google Scholar
  34. 34.
    Arias IM Mechanisms and consequences of ion transport in the liver. In: Progress in Liver Diseases, Vol 3 (Popper H, Shaffner F, eds). Orlando: Grune and Stratton, 1986, pp. 145–159.Google Scholar
  35. 35.
    Accatino L, Simon FR. Identification and characterization of a bile acid receptor in isolated liver surface membranes. J Clin Invest 1976;57:496–508.PubMedCrossRefGoogle Scholar
  36. 36.
    Gonzalez MC, Sutherland E, Simon FR. Regulation of hepatic transport of bile salts and their binding to liver surface membrane fractions. J Clin Invest 1979; 63:684–694.PubMedCrossRefGoogle Scholar
  37. 37.
    Simon FR, Sutherland EM, Gonzalez M. Regulation of bile salt transport in rat liver. J Clin Invest 1982;70:401–411.PubMedCrossRefGoogle Scholar
  38. 38.
    Okishio T, Nair PP. Studies on bile acids. Some observations on the intracellular localization of major bile acids in rat liver. Biochemistry 1966;5:3662–3667.PubMedCrossRefGoogle Scholar
  39. 39.
    Strange RC, Beckett GJ, Percy-Robb IW. Nuclear and cytosolic distribution of conjugated cholic acid and radiolabeled glycocholic acid in rat liver. Biochem J 1979;178:71–78.PubMedGoogle Scholar
  40. 40.
    Strange RC, Chapman BT, Johnston JD, Nimmo IA, Percy-Robb IW. Partitioning of bile acids into subcellular organelles and the in vivo distribution of bile acids in rat liver. Biochem Biophys Acta 1979;573:535–545.PubMedGoogle Scholar
  41. 41.
    Strange RC. Hepatic bile salt transport. A review of subcellular binding sites. Biochem Soc Trans 1981;9:170–174.PubMedGoogle Scholar
  42. 42.
    Strange RC, Cramb R, Hayes JD, Percy-Robb IW. Partial purification of two lithocholic acid-binding proteins from rat liver 100000g supernatants. Biochem J 1977;165:425–429.PubMedGoogle Scholar
  43. 43.
    Strange RC, Nimmo IA, Percy-Robb IW. Equilibrium-dialysis studies of the interaction between cholic acid and 100000g-supernatant preparations from the rat liver. Biochem J 1976;156:427–433.PubMedGoogle Scholar
  44. 44.
    Strange RC, Nimmo IA, Percy-Robb IW. Binding of bile acids by 100,000g supernatants from rat liver. Biochem J 1977;162:659–664.PubMedGoogle Scholar
  45. 45.
    Levi AJ, Gatmaitan Z, Arias IM. Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein and other anions. J Clin Invest 1969;48:2156–2167.PubMedCrossRefGoogle Scholar
  46. 46.
    Pattinson N. Purification by affinity chromatography of glutathione S-transferases A and C from rat liver cytosol. Anal Biochem 1981;115:424–427.PubMedCrossRefGoogle Scholar
  47. 47.
    Pattinson NR. Isolation of two cholic acid-binding proteins from rat liver cytosol using affinity chromatography. Biochim Biophys Acta 1981;667:70–76.PubMedGoogle Scholar
  48. 48.
    Wolkoff AW, Ketley JN, Waggoner JG, Berk PD, Jakoby WB. Hepatic accumulation and intracellular binding of conjugated bilirubin. J Clin Invest 1978;61:142–149.PubMedCrossRefGoogle Scholar
  49. 49.
    Sugiyama Y, Yamada T, Kaplowitz N. Newly identified organic anion-binding proteins in rat liver cytosol. Biochem Biophys Acta 1982;709:342–352.PubMedCrossRefGoogle Scholar
  50. 50.
    Sugiyama Y, Yamada T, Kaplowitz N. Newly identified bile acid binders in rat liver cytosol. J BiolChem 1983;258:3602–3607.Google Scholar
  51. 51.
    Conrad MJ, Singer SJ. The solubility of amphipathic molecules in biological membranes and lipid bilayers and its implications for membrane structure. Biochemistry 1981;20:808–818.PubMedCrossRefGoogle Scholar
  52. 52.
    Jones AL, Schmucker DL, Mooney JS, Adler RD, Ockner RK. Morphometric analysis of rat hepatocytes after total biliary obstruction. Gastroenterology 1976;71:1051–1061.Google Scholar
  53. 53.
    Jones AL, Schmucker DL, Mooney JS, Adler R, Ockner RK. A quantitative analysis of hepatic ultrastructure in rats during enhanced bile secretion. Anat Rec 1978;192:227–228.CrossRefGoogle Scholar
  54. 54.
    Jones AL, Schmucker DL, Mooney JS, Ockner RK, Adler RD. Alterations in hepatic pericanalicular cytoplasm during enhanced bile secretory activity. Lab Invest 1979;40:512–517.PubMedGoogle Scholar
  55. 55.
    Boyer JL, Istbashi M, Hruban Z. Formation of pericanalicular vacuoles during sodium dehy-drocholate choleresis: A mechanism for bile acid transport. In: The Liver; Quantitative Aspects of Structure and Function (Preisig R, Bircher J, Paumgartner G, eds). Bern: Cantor-Aulendorf, 1979, pp. 163–178.Google Scholar
  56. 56.
    Suchy FJ, Balistreri WF, Hung J, Miller P, Garfield SA. Intracellular bile acid transport in rat liver as visualized by electron microscope radioautography using a bile acid analogue. Am J Physiol 1983;(Gastrointest Liver Physiol 8):G681–G689.Google Scholar
  57. 57.
    Goldsmith MA, Huling S. Effect of estradiol on hepatocyte handling of horseradish peroxidase (HRP) and bile salts (abstract). Gastroenterology 1982;82:1255A.Google Scholar
  58. 58.
    Reuben A, Allen RM, Boyer JL. Intrahepatic sources of “biliary-like” bile acid (BA)-phospholipid (PL)-cholesterol (CH) micelles (abstract). Gastroenterology 1982;82:1241A.Google Scholar
  59. 59.
    Meier PJ, Ruetz SH, Fricker G, Landmann L. Characterization of canalicular bile acid transport system of rat liver (abstract). In: IX International Bile Acid Meeting Falk Symposium, 1986, p. 32.Google Scholar
  60. 60.
    Korn ED. Biochemistry of actomyosin-dependent cell motility. Proc Natl Acad Sci USA 1978;75:588–599.PubMedCrossRefGoogle Scholar
  61. 61.
    Tuchweber B, Gabbiani C. Phalloidin-induced hyperplasia of actin microfilaments in rat hepatocytes. In: The Liver: Quantitative Aspects of Structure and Function (Preisig R, Bircher J, Paumgartner G, eds). Bern: Cantor-Aulendorf, 1976, pp. 84–90.Google Scholar
  62. 62.
    Phillips MJ, Oda M, Mak E, Fisher MM, Jeejeebhoy KN. Microfilament dysfunction as a possible cause of intrahepatic cholestasis. Gastroenterology 1975;69:48–58.PubMedGoogle Scholar
  63. 63.
    Phillips MJ, Oshio C, Miyairi M. Microfilament dysfunction as a mechanism in intrahepatic cholestasis; evidence from time lapse cinemicrophotography (abstract). Gastroenterology 1980;79:1120.Google Scholar
  64. 64.
    Oshio C, Phillips MJ. Contractility of bile canaliculi: implications for liver function. Science 1981;212:1041–1042.PubMedCrossRefGoogle Scholar
  65. 65.
    Lowe PJ, Barnwell SG, Coleman R. Rapid kinetic analysis of the bile-salt-dependent secretion of phospholipid, cholesterol and a plasma-membrane enzyme into bile. Biochem J 1984;222:631–637.PubMedGoogle Scholar
  66. 66.
    Barnwell SG, Lowe PJ, Coleman R. The effects of colchicine on the secretion into bile of bile salts, phospholipids, cholesterol and plasma membrane enzymes: Bile salts are secreted unaccompanied by phospholipids and cholesterol. Biochem J 1984;220:723–731.PubMedGoogle Scholar
  67. 67.
    Yousef IM, Barnwell S, Gratton F, Tuchweber B, Weber A, Roy CC. Liver cell membrane solubilization may control maximum secretory rate of cholic acid in the rat. Am J Physiol 1987;252:684–696.Google Scholar
  68. 68.
    Erlinger S. Does Na+ K+ ATPase have any rate in bile secretion? Am J Physiol 1982;243:6243–6247.Google Scholar
  69. 69.
    Blitzer BL, Boyer JL. Cytochemical localization of Na+ K+ ATPase in the rat hepatocyte. J Clin Invest 1978;62:1104–1108.PubMedCrossRefGoogle Scholar
  70. 70.
    Latham PS, Kashgarian M. The ultrastructural localization of transport ATPase in the rat liver at non-bile canalicular plasma membrane. Gastroenterology 1979;76:988–996.PubMedGoogle Scholar
  71. 71.
    Layden TJ, Elias E, Boyer JL. Bile formation in the rat. The rate of the paracellular shunt pathway. J Clin Invest 1978;62:1375–1385.PubMedCrossRefGoogle Scholar
  72. 72.
    Schenk DB, Leffert HL. Monoclonal antibodies to rat Na+, K+ ATPase block enzymatic activity. Proc Natl Acad Sci USA 1983;80:5281–5285.PubMedCrossRefGoogle Scholar
  73. 73.
    Takemura S, Omori K, Tanaka K, Omori K, Matsumura S, Tashiro Y. Quantitative immunoferritin localization of Na+, K+ ATPase on the canine hepatocyte cell surface. J Cell Biol 1984;99:1502–1512.PubMedCrossRefGoogle Scholar
  74. 74.
    Leffert HL, Schenk DB, Hubert JJ, Skelly H, Schumacher M, Ariyasu R, Ellisman M, Koch KS, Keller GA. Hepatic Na+, K+ ATPase: A current view of its structure, function and localization in rat liver as revealed by studies with monoclonal antibodies. Hepatology 1985;5:501–507.PubMedCrossRefGoogle Scholar
  75. 75.
    Yousef IM, Tuchweber B, Weber AM, Roy CC. Where is Na+, K+ ATPase located in the liver plasma membrane. Gastroenterology 1984;86:1632–1633.PubMedGoogle Scholar
  76. 76.
    Diamond JM. Transport of salt and water in rabbit and guinea pig gall bladder. J Gen Physiol 1964;48:1–14.PubMedCrossRefGoogle Scholar
  77. 77.
    Schulz I, Strover F, Ullrich KJ. Lipid soluble weak organic buffers as “substrate” for pancreatic secretion. Pfluegers Arch 1971;323:121–140.CrossRefGoogle Scholar
  78. 78.
    Swanson CG, Solomon AK. Evidence for Na-H exchange in the rabbit pancreas. Nature New Biol 1972;236:183–184.PubMedGoogle Scholar
  79. 79.
    Turnberg LA, Bieberdorf FA, Morawski SG, Fordtran JS. Interrelationship of chloride, bicarbonate, sodium and hydrogen transport in human ileum. J Clin Invest 1970;49:557–567.PubMedCrossRefGoogle Scholar
  80. 80.
    Turnberg LA, Fordtran JS, Carter MW, Rector FC Jr. Mechanism of bicarbonate absorption and its relationship to sodium transport in the human jejunum. J Clin Invest 1970;49:548–556.PubMedCrossRefGoogle Scholar
  81. 81.
    Moseley H, Meier PJ, Knickelbein R, Aronson PS, Boyer JL. Evidence for Na+H+ exchange in rat liver basolateral but not canalicular membrane vesicles (abstract). Hepatology 1984;4:1040.Google Scholar
  82. 82.
    Klassen CD. Does bile acid secretion determine canalicular bile production in rats? Am J Physiol 1971;220:667–673.Google Scholar
  83. 83.
    Klos C, Paumgartner G, Reichen J. Cation-anion gap and choleretic properties of rat bile. Am J Physiol 1979; (Endocrinol Metab Gastrointest Physiol 5):E434–E440.Google Scholar
  84. 84.
    French SW. Role of canalicular contraction in bile flow. Lab Invest 1985;53:245–249.PubMedGoogle Scholar
  85. 85.
    Denk H, Lackinger E, Vennigerholz F Pathology of cytoskeleton of hepatocytes. In: Progress in Liver Diseases, Vol 8 (Popper H, Schaffner F, eds). Orlando: Grune and Stratton, 1986, pp. 237–251.Google Scholar
  86. 86.
    Phillips MJ, Oda M, Mak E, Fisher MM, Jeejeebhoy KN. Microfilament dysfunction as a possible cause of intrahepatic cholestasis. Gastroenterology 1975;69:48–58.PubMedGoogle Scholar
  87. 87.
    Vonk RJ, Yousef IM, Corriveau JP, Tuchweber B. Phalloidin-induced morphological and functional changes of rat liver. Liver 1982;2:133–140.PubMedGoogle Scholar
  88. 88.
    Oshio C, Phillips MJ. Contractility of bile canaliculi: Implication for liver function. Science 1981;212:1041–1042.PubMedCrossRefGoogle Scholar
  89. 89.
    Miyairi M, Oshio C, Watanabe S, Smith CR, Yousef IM, Phillips MJ. Taurocholate accelerates bile canalicular contractions in isolated rat hepatocytes. Gastroenterology 1984;87:788–792.PubMedGoogle Scholar
  90. 90.
    Watanabe S, Smith CR, Phillips MJ. Coordination of the contractile activity of bile canaliculi, evidence from calcium microinjection of triplet hepatocytes. Lab Invest 1985;531:275–280.Google Scholar
  91. 91.
    Boyer JL. Tight junction in normal and cholestatic liver. Does the paracellular pathway have a significance? Hepatology 1983;3:614–617.PubMedCrossRefGoogle Scholar
  92. 92.
    Spray DC, Ginzberg RD, Morales EA, Gatmaitan Z, Ans IM. Electrophyisological properties of gap junctions between dissociated pairs of rat hepatocytes. J Cell Biol 1986;103:135–144.PubMedCrossRefGoogle Scholar
  93. 93.
    Lindbald L, Schersten T. Influence of cholic and chenodeoxycholic acid on canalicular bile flow in man. Gastroenterology 1976;70:1121–1124.Google Scholar
  94. 94.
    O’Maille ERL, Kozmary SV, Hofmann AF, Gurantz D. Differing effects of norcholate and cholate on bile flow and biliary lipid secretion in the rat. Am J Physiol 1984;246:G67–G71.PubMedGoogle Scholar
  95. 95.
    Danzinger RG, Nakagaki M, Hofmann AF. Differing effects of hydroxy-7-oxotaurine conjugated bile acids on bile flow and biliary lipid secretion in dogs. Am J Physiol 1984;246:G166–G173.PubMedGoogle Scholar
  96. 96.
    Yoon YB, Hagey LR, Hofmann AF, Gurantz D, Michelotti EL, Steinbach JH. Effect of side-chain shortening on the physiologic properties of bile acids: Hepatic transport and effect on biliary secretion of 23-nor-urso-deoxycholate in rodents. Gastroenterology 1986;90:837–852.PubMedGoogle Scholar
  97. 97.
    Scharschmidt BF, Lake JR, Licho V, Wong MA, Van Dyke RW. Fluid phase endocytosis by cultured rat hepatocytes. Implications for plasma membrane remodeling. Hepatology 1985;5:1011.Google Scholar
  98. 98.
    Tavoloni N. Role of ductular bile water reabsorption in canine bile secretion. J Lab Clin Med 1985;106:154–161.PubMedGoogle Scholar
  99. 99.
    Yamamoto K, Phillips MJ. A hitherto unrecognized bile ductular plexus in normal rat liver. Hepatology 1984;4:381–385.PubMedGoogle Scholar
  100. 100.
    Javitt NB. Current status of cholestasis induced by nomohydroxy bile acids. In: Jaundice (Goresky GA, Fisher MM, eds). New York: Plenum Press, 1975, pp. 401–409.Google Scholar
  101. 101.
    Fouin-Fortunet H, Le Quernec L, Erlinger S, Lerebours E, Collin R. Hepatic alterations during total parenteral nutrition in patients with inflammatory bowel disease: A possible consequence of lithocholate toxicity. Gastroenterology 1982;82:932–937.PubMedGoogle Scholar
  102. 102.
    Capron JP, Gineston JL, Herve MA, Braillon A. Metronidazole in prevention of cholestasis associated with parenteral nutrition. Lancet 1983;1:446–447.PubMedCrossRefGoogle Scholar
  103. 103.
    Fisher RL, Anderson DW, Boyer JL, Ishak K, Klatskin G, Lachin JM, Phillips MJ and the Steering Committee for the National Cooperative Gallstone Study Group. A prospective morphologic evaluation of hepatic toxicity of cohnodeoxycholic acid in patients with cholelithiasis. The National Cooperative Gallstone Study. Hepatology 1982;2:187–201.PubMedCrossRefGoogle Scholar
  104. 104.
    Hanson RF, Isenberg JN, Williams GC, Hachey D, Szczepanik P, Klein PD, Scharp HL. The metabolism of 3α, 7α, 12α-trihydroxy-5β-cholestane-26-oic acid in two siblings with cholestasis due to intrahepatic bile duct anomalies. An apparent inborn error of cholic acid synthesis. J Clin Invest 1975;56:557–587.CrossRefGoogle Scholar
  105. 105.
    Roy CC, Weber AM, Morin CL, Combes JC, Nussle D, Megevand A, Lasalle R. Abnormal biliary lipid composition in cystic fibrosis. N Engl J Med 1977;297:1301–1305.PubMedCrossRefGoogle Scholar
  106. 106.
    Roy CC, Weber AM, Morin CL, Lepage G, Brisson G, Yousef I, Lasalle R. Hepatobiliary disease in cystic fibrosis: A survey of current issues and concepts. J Fed Gastroenterol Nutr 1982;1:469–478.CrossRefGoogle Scholar
  107. 107.
    Korman MG, Hofmann AF, Summerskill WH. Assessment of activity in chronic liver disease: Serum bile acids compared with conventional tests and histology. N Engl J Med 1974;290:1399–1402.PubMedCrossRefGoogle Scholar
  108. 108.
    Makino I, Hashimoto H, Shinozaki K, Yoshino K, Nakagawa S. Sulfated and nonsulfated bile acids in urine, serum and bile of patients with hepatobiliary diseases. Gastroenterology 1975;68:545–553.PubMedGoogle Scholar
  109. 109.
    Stiehl A, Ast E, Czygan P, Frohling W, Raedsch R, Kommerell B. Pool size, synthesis and turnover of sulfated and nonsulfated cholic acid and chenodeoxycholic acid in patients with fibrosis of the liver. Gastroenterology 1978;74:572–577.PubMedGoogle Scholar
  110. 110.
    Fisher MM, Yousef IM. Sex differences in the bile acid composition of human bile: studies in patients with and without gallstones. Can Med Assoc J 1973;109:190–193.PubMedGoogle Scholar
  111. 111.
    Yousef IM, Kakis G, Fisher MM. Bile acid metabolism in mammals: III. Sex differences in the bile acid composition of rat bile. Can J Biochem 1972;50:402–414.PubMedGoogle Scholar
  112. 112.
    Subbiah MT, Kuksis A, Mookerjea S. Secretion of bile salts by isolated and intact rat liver. Can J Biochem 1969;47:847–854.PubMedCrossRefGoogle Scholar
  113. 113.
    Fisher MM, Kakis G, Yousef IM. Bile acid pool in Wistar rats. Lipids 1976;11:93–96.PubMedCrossRefGoogle Scholar
  114. 114.
    Yousef IM, Yousef MK, Bradley WG. Bile acid composition in some desert rodents. Proc Soc Exp Biol Med 1973;143:596–601.PubMedGoogle Scholar
  115. 115.
    Yousef IM, Bradley WG, Yousef MK. Bile acid composition of some lizards from Southwestern United States. Proc Soc Exp Biol Med 1977;154:22–26.PubMedGoogle Scholar
  116. 116.
    Danielsson H, Einarsson K. Formation and metabolism of bile acids. In: Biological Basis of Medicine, Vol 5 (Bittar EE, Bittar N, eds). New York: Academic Press, 1969, pp. 279–325.Google Scholar
  117. 117.
    Mitropoulos KA, Myant NB. The formation of lithocholic acid, chenodeoxycholic acid and alpha and beta-muricholic acids from cholesterol incubated with rat liver mitochondria. Biochem J 1967;103:472–479.PubMedGoogle Scholar
  118. 118.
    Mitropoulos KA, Myant NB. The formation of lithocholic acid chenodeoxycholic acid and other bile acids from 3-beta-hydroxychol-5-enoic acid in vitro and in vivo. Biochim Biophys Acta 1967;144:430–439.PubMedGoogle Scholar
  119. 119.
    Anderson K, Kok E, Javitt NB. Bile acid synthesis in man: metabolism of 7 hydroxycholes-terol-14C and 26-hydroxycholesterol-3H. J din Invest 1972;51:112–117.Google Scholar
  120. 120.
    Fisher MM, Magnusson R, Miyai K. Bile acid metabolism in mammals: I. Bile acid induced intrahepatic cholestasis. Lab Invest 1971;21:88–91.Google Scholar
  121. 121.
    Javitt NB. Cholestasis in rats induced by taurolithocholate. Nature 1966; 210:1262–1263.PubMedCrossRefGoogle Scholar
  122. 122.
    Javitt NB, Emerman S. Effect of sodium taurolithocholate on bile flow and bile acid excretion. J Clin Invest 1968;47:1002–1014.PubMedCrossRefGoogle Scholar
  123. 123.
    Miyai K, Mayr WW, Richardson AL. Acute cholestasis induced by lithocholic acid in rats. A freeze-fracture replica and a thin secretion study. Lab Invest 1975;32:527–535.Google Scholar
  124. 124.
    Miyai K, Richardson AL, Mayr WW, Javitt NB. Subcellular pathology of rat liver in cholestasis and choleresis induced by bile salts. I. Effects of lithocholic, 3 hydroxy-5-cholenoic, cholic and dehydrocholic acids. Lab Invest 1977;36:249–258.PubMedGoogle Scholar
  125. 125.
    Palmer RH, Bolt MG. Bile acid sulfates. I. Synthesis of lithocholic acid sulfate and their identification in human bile. J Lipid Res 1971;12:671–679.PubMedGoogle Scholar
  126. 126.
    Cowen AE, Korman MG, Hofmann AF, Cass OW, Coffin SB. Metabolism of lithocholate in healthy men. II. Enterohepatic circulation. Gastroenterology 1975;69:67–76.PubMedGoogle Scholar
  127. 127.
    Layden TJ, Schwarz, Boyer JL. Scanning electron microscopy of rat liver. Studies of the effect of taurolithocholate and other models of cholestasis. Gastroenterology 1975;69:724–738.PubMedGoogle Scholar
  128. 128.
    Yousef IM, Kakis G, Fisher MM. Lithocholate induced intrahepatic cholesteasis (abstract). Gastroenterology 1976;70:996.Google Scholar
  129. 129.
    Kakis G, Yousef IM. Pathogenesis of lithocholate and taurolithocholate induced intrahepatic cholestasis in rats. Gastroenterology 1978;75:595–607.PubMedGoogle Scholar
  130. 130.
    Kakis G, Phillips MJ, Yousef IM. The respective roles of membrane cholesterol and of sodium potassium adenosine triphosphatase in the pathogenesis of lithocholate induced cholestasis. Lab Invest 1980;43:73–81.PubMedGoogle Scholar
  131. 131.
    Kakis G, Yousef IM. Mechanism of cholic acid protection in lithocholate induced intrahepatic cholestasis in rats. Gastroenterology 1980;78:1402–1411.PubMedGoogle Scholar
  132. 132.
    Cooper RA. Abnormalities of cell membrane fluidity in the pathogenesis of disease. N Engl J Med 1977;297:371–377.PubMedCrossRefGoogle Scholar
  133. 133.
    Papahadjopoulos D, Cowden M, Kimelberg H. Role of cholesterol in membranes: effects on phospholipid-protein interactions membrane permeability and enzymatic activity. Biochim Biophys Acta 1973;330:8–26.PubMedCrossRefGoogle Scholar
  134. 134.
    Simon FR, Gonzales M, Davis R. Studies on the pathogenesis of cholesterol gallstone formation: Alterations of bile acid transport and liver surface membrane lipid structure by estrogen. In: Gallstones (Fisher MM, Goresky CA, Shaffer EA, Strasberg SM, eds). New York: Plenum Press, 1979; 251–265.Google Scholar
  135. 135.
    Yousef IM, Tuchweber B. Effect of lithocholic acid on cholesterol synthesis and transport in the rat liver. Biochim Biophys Acta 1984;796:336–344.PubMedGoogle Scholar
  136. 136.
    Yousef IM, Lewittes M, Tuchweber B, Roy CC, Weber A. Lithocholic acid cholesterol interactions in rat liver plasma membrane fractions. Biochim Biophys Acta 1984;796:345–353.PubMedGoogle Scholar
  137. 137.
    Lewittes M, Tuchweber B, Weber A, Roy CC, Yousef IM. Resistance of the suckling guinea pig to lithocholic acid induced cholestasis. Hepatology 1984;4:486–491.PubMedCrossRefGoogle Scholar
  138. 138.
    Yousef IM, Tuchweber B, Weber A. Prevention of lithocholate induced cholestasis by cycloheximide, an inhibitor of protein synthesis. Life Sci 1983;33:103–110.PubMedCrossRefGoogle Scholar
  139. 139.
    Kugelmass R, Tuchweber B, Weber A, Roy CC, Yousef IM. Effect of inhibition of cholesterol synthesis on lithocholic induced cholestasis in rats (abstract). Hepatology 1982;2:730.Google Scholar
  140. 140.
    Barnwell SG, Yousef IM, Tuchweber B. The effect of colchicine on the development of lithocholic acid induced cholestasis: a study of the role of microtubules in intracellular cholesterol transport. Biochem J 1986;236:345–350.PubMedGoogle Scholar
  141. 141.
    Palmer RH. Bile acids, liver injury, and liver disease. Arch Intern Med 1972;130:606–617.PubMedCrossRefGoogle Scholar
  142. 142.
    Cowen AE, Korman MG, Hofmann AF, Cass OW. Metabolism of lithocholate in healthy man. I. Biotransformation and biliary excretion of intravenously administered lithocholate, lithocholylglycine, and their sulfates. Gastroenterology 1975;69:59–66.PubMedGoogle Scholar
  143. 143.
    Raedsch R, Stiehl A, Gundert-Remy U, Kommereil B. Hepatic secretion of sulfated and glucuronidated bile acids in man. In: Enterohepatic Circulation of Bile Acids and Sterol Metabolism (Paumgartner G, Stiehl A, Gerok W, eds). England: MTP Press, 1984, pp. 225–229.Google Scholar
  144. 144.
    Kuipers F, Heslinga H, Havinga R, Vonk RJ. Intestinal absorption of lithocholic acid sulfates in the rat: Inhibitory effects of calcium. Am J Physiol 1986;251:G189–G194.PubMedGoogle Scholar
  145. 145.
    Carey MC, Wy SFJ, Watkins JB. Solution properties of sulfated monohydroxy bile salts relative insolubility of the disodium salt of glycolithocholate sulfate. Biochim Biophys Acta 1979;575:16–26.PubMedGoogle Scholar
  146. 146.
    Yousef IM, Tuchweber B, Vonk RJ, Masse D, Audet M, Roy CC. Lithocholate cholestasis-sulfated glycolithocholate induced intrahepatic cholestasis in rats. Gastroenterology 1981;80:233–241.PubMedGoogle Scholar
  147. 147.
    Roy CC, Fournier LA, Dorvill NP, Perea A, Weber A, Tuchweber B, Yousef IM. The pattern of bile acid conjugation: A critical determinant of the cholestatic potential of sulfated lithocholate (abstract). Pediatr Res 1983;17:198A.Google Scholar
  148. 148.
    Vessey DA. The biochemical basis for the conjugation of bile acids with either glycine or taurine. Biochem J 1978;147:621–626.Google Scholar
  149. 149.
    Sjovall J. Dietary glycine and taurine on bile acid conjugation in man. Proc Soc Exp Biol Med 1959;100:676–678.PubMedGoogle Scholar
  150. 159.
    Truswell AS, McVeigh S, Mitchell WD. Effect in man of feeding taurine on bile acid conjugation and serum cholesterol levels. J Artheroscler Res 1965;5:526–529.CrossRefGoogle Scholar
  151. 151.
    Kibe A, Wake C, Kuramoto T, Hoshita T. Effect of dietary taurine on bile acid metabolism in guinea pig. Lipids 1980;15:224–229.PubMedCrossRefGoogle Scholar
  152. 152.
    Dorvil NP, Yousef IM, Tuchweber B, Roy CC. Taurine prevents cholestasis induced by lithocholic acid sulfate in guinea pigs. Am J Clin Nutr 1983;37:221–232.PubMedGoogle Scholar
  153. 153.
    Darling PB, Lepage G, Leroy C, Masson P, Roy CC. Effect of taurine supplements on fat absorption in cystic fibrosis. Pediatr Res 1985;19:578–582.PubMedCrossRefGoogle Scholar
  154. 154.
    Belli DC, Levy E, Darling PB, Leroy C, Lepage G, Giguere P, Roy CC. Taurine improves the absorption of a fat meal in cystic fibrosis patients. Pediatrics 1987;80:517–523.PubMedGoogle Scholar
  155. 155.
    Belli DC, Fournier LA, Lepage G, Tremblay P, Yousef IM, Roy CC. The influence of taurine on the bile acid maximum secretory rate in the guinea pig. Pediatr Res 1988;24:34–37.PubMedGoogle Scholar
  156. 156.
    Roy CC, Belli DC. Hepatobiliary complications associated with TPN: An enigma. J Am Coll Nutr 1985;4:651–660.PubMedGoogle Scholar
  157. 157.
    Guertin F, Roy CC, Tuchweber B, Yousef IM. Taurine prevents cholestasis associated with short term amino acid-dextrose infusion in guinea pigs (abstract). Hepatology 1986:6:1196.Google Scholar
  158. 158.
    Wright CE, Tallan HH, Lin YY, Gaull GE. Taurine: Biological update. Ann Rev Biochem 1986;55:427–453.PubMedCrossRefGoogle Scholar
  159. 159.
    Drew R, Priestly GB. Cholestatic properties of various bile salts. Experientia 1979;35:809–811.PubMedCrossRefGoogle Scholar
  160. 160.
    Hall TJ, Baker AL, Cooper MJ, Moosa AR. Choleresis and cholestasis produced by infusion of taurocholic acid or taurodehydrocholic acid combined with BSP in the rhesus monkey. Dig Dis Sci 1979;24:350–357.CrossRefGoogle Scholar
  161. 161.
    Herz R, Paumgartner G, Preisig R. Inhibition of bile formation by high doses of taurocholate in the perfused rat liver. Scand J Gastroenterol 1975:11:741–761.Google Scholar
  162. 162.
    Hardison WGM, Hatoff DE, Miyai K, Weinger RG. Nature of bile acid maximum secretion rate in the rat. Am J Physiol 1981;241:337–343.Google Scholar
  163. 163.
    Yousef IM, Barnwell SA, Tuchweber B, Weber A, Roy CC. Effect of complete sulfation of bile acids on bile formation in rats. Hepatology 1987;7:535–542.PubMedCrossRefGoogle Scholar
  164. 164.
    Billington D, Coleman R. Plasma membrane vesiculation, phospholipid solubilization and their possible relationship to bile secretion. Biochim Biophys Acta 1978;509:33–47.PubMedCrossRefGoogle Scholar
  165. 165.
    Rahman K, Hammond TG, Lowe PJ, Barnwell SG, Clark B, Coleman R. Control of biliary phospholipid secretion. Biochem J 1986;234:421–427.PubMedGoogle Scholar
  166. 166.
    Stiehl A. Bile salt sulfates in cholestasis. Eur J Clin Invest 1974;4:59–63.PubMedCrossRefGoogle Scholar
  167. 167.
    Summerfield JA, Cullen J, Barnes S, Billing BH. Evidence for re-control of urinary excretion of bile acid and bile acid sulfate: the cholestatic syndrome. Clin Sci Mol Med 1977;52:51–65.PubMedGoogle Scholar
  168. 168.
    Bartholomew TC, Summerfield JA, Billing BH, Lawson AM, Setchell KD. Bile acid profiles of human serum and skin interstitial fluid and their relationship to pruritus studied by gas chromatography-mass spectrometry. Clin Sci 1982:63:65–73.PubMedGoogle Scholar
  169. 169.
    Donovan JM, Yousef IM, Carey MC. Complete sulfation of the common bile salts of man. Synthesis, properties and interactions with lecithin (abstract). Gastroenterology 1984;86:1064.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Claude C. Roy
    • 1
  • Beatriz Tuchweber
    • 2
  • Andrée M. Weber
    • 1
  • Ibrahim M. Yousef
    • 3
  1. 1.Department of PediatricsHôpital Sainte-Justine, and University of MontrealMontrealCanada
  2. 2.Pediatric Research Center, Hôpital Sainte-Justine, and Department of NutritionUniversity of MontrealMontrealCanada
  3. 3.Pediatric Research Center, Hôpital Sainte-Justine, and Department of PharmacologyUniversity of MontrealMontrealCanada

Personalised recommendations