Skip to main content

Pathophysiology of Diarrhea

Mechanisms of Action of Antidiarrheal Agents

  • Chapter
Book cover Modern Concepts in Gastroenterology Volume 2

Part of the book series: Topics in Gastroenterology ((TGEN))

  • 61 Accesses

Abstract

It has been estimated that approximately 9 liters of fluid enters the gut each day: 1–1.5 liters from the diet; the rest as digestive secretions from the liver, pancreas, stomach, and small intestine. The majority of this fluid is absorbed during fairly rapid passage through the small intestine. About 1–1.5 liters passes through the ileocecal valve into the colon, and 90% of this is absorbed in the colon leaving the subject to pass a solid stool of approximately 100 g.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rambaud JC, Modigliani R, Emorts P et al. Fluid secretion in the duodenum and intestinal handling of water and electrolytes in Zollinger-Ellison syndrome. Am J Dig Dis 1978;23:1089–1097.

    Article  PubMed  CAS  Google Scholar 

  2. Field M. Secretion of electrolytes and water by mammalian small intestine. In: Physiology of the Gastrointestinal Tract (Johnson LR, ed). New York: Raven Press, 1981, pp. 963–982.

    Google Scholar 

  3. Heintze K, Stewart CP, Frizzell RA. Sodium-dependent chloride secretion across rabbit descending colon. Am J Physiol (Gastrointest Liver Physiol 7) 1983;244:G357–G365.

    CAS  Google Scholar 

  4. Dharmsathaphorn KA, Weymer KA, McRoberts JA. Chloride secretion induced by prostaglandin E1 (PGE1): Participation of Na, K, Cl cotransport, Cl channels and K channels (abstract). Gastroenterology 1985;88:1364.

    Google Scholar 

  5. Turjman N, Gotterer GS, Hendrix TR. Prevention and reversal of cholera enterotoxin effects on rabbit jejunum by nicotinic acid. J Clin Invest 1978;61:1155–1160.

    Article  PubMed  CAS  Google Scholar 

  6. Cohen ME, Donowitz M, Gudiurch R, Sharp GWG. cAMP-induced phosphorylation of rabbit ileal microvillus membrane and cytosol: Evidence of interaction (abstract). Fed Proc 1983;42:1288.

    Google Scholar 

  7. Rao MC, Nash N, Palfrey HC. Ca-calmodulin and cyclic neucleotide-dependent phosphorylation in epithelial cells (abstract). J Cell Biol 1982;95:254A.

    Google Scholar 

  8. Shlatz LJ, Kimberg DV, Cattieu KA. Phosphorylation of specific rat intestinal microvillus and basolateral membrane proteins by cyclic nucleotides. Gastroenterology 1979;76:293–298.

    PubMed  CAS  Google Scholar 

  9. Craven PA, DeRubertis FR. Patterns of prostaglandin synthesis and degradation in isolated superficial and proliferative colonic epithelial cells compared to residual colon. Prostaglandins 1983;26:583–604.

    Article  PubMed  CAS  Google Scholar 

  10. Gunther RD, Wright EM. Na, Li, and Cl transport by brush border membranes from rabbit jejunum. J Membr Biol 1983;74:85–94.

    Article  PubMed  CAS  Google Scholar 

  11. Fondacaro JD. Intestinal ion transport and diarrheal disease. Am J Physiol (Gastrointest Liver Physiol 13) 1986;250:G1–G8.

    CAS  Google Scholar 

  12. Donowitz M, Wicks J, Madara JL, Sharp GWG. Studies on role of calmodulin in Ca2+ regulation of rabbit ileal Na and Cl transport. Am J Physiol (Gastrointest Liver Physiol 11) 1985;248:G726–G720.

    CAS  Google Scholar 

  13. Holmgren J, Lange S, Lonnroth I. Reversal of cyclic AMP-mediated intestinal secretion in mice by chlorpromazine. Gastroenterology 1978;75:1103–1108.

    PubMed  CAS  Google Scholar 

  14. Lonnroth I, Holmgren J, Lange S. Chlorpromazine inhibits cholera toxin-induced intestinal hypersecretion. Med Biol 1977;55:126–129.

    PubMed  CAS  Google Scholar 

  15. Rabbani GH, Holmgren J, Greenough WB III, Lonnroth I. Chlorpromazine reduces fluid loss in cholera. Lancet 1979;1:410–412.

    Article  PubMed  CAS  Google Scholar 

  16. Holmgren J, Lange S, Lonnroth I. Reversal of cyclic AMP-mediated intestinal secretion in mice by chlorpromazine. Gastroenterology 1978;75:1103–1108.

    PubMed  CAS  Google Scholar 

  17. Bieberdorf FA, Gorden P, Fordtran JS. Pathogenesis of congenital alkalosis and diarrhea. Implications for the physiology of normal ileal absorption and secretion. J Clin Invest 1972;51;1958–1964.

    Article  PubMed  CAS  Google Scholar 

  18. Booth IW, Strange G, Murer H, Fenton TR, Milla PJ. Defective jejunal brush border Na+/ H+ exchange. A cause of secretory diarrhea. Lancet 1985;2:1066.

    Article  Google Scholar 

  19. Dillard RL, Eastman H, Fordtran JS. Volume flow relationship during transport of fluid through the human small intestine. Gastroenterology 1965;49:58–66.

    Google Scholar 

  20. Williams NS, Meyer JH, Jehn D, Miller J. Canine intestinal transit and digestion of radiolabelled liver particles. Gastroenterology 1984;86:1451–1459.

    PubMed  CAS  Google Scholar 

  21. Trendelenberg P. Physiologische and pharmakologische verusche uber die Dunndarmperistaltik. Arch Exp Path Pharmak 1917;81:55–129.

    Article  Google Scholar 

  22. Fleckenstein P, Bueno L, Fioramonti J. Minute rhythm of electrical spike bursts of the small intestine in different species. Am J Physiol 1982;842:G654–G659.

    Google Scholar 

  23. Binder HJ. Pathophysiology of bile acid and fatty acid induced diarrhea. In: Secretory Diarrhea (Field M, Fordtran JS, Schultz SG, eds). American Physiological Society, 1980, pp. 159–178.

    Google Scholar 

  24. Snape WJ, Shiff S, Cohen S. Effect of deoxycholic acid on colonic motility in the rabbit. Am J Physiol 1980;238:G321–G325.

    PubMed  CAS  Google Scholar 

  25. Cooke AR. The control of gastric emptying and motility. Gastroenterology 1975;68:804–816.

    PubMed  CAS  Google Scholar 

  26. Read NW, Krejs GJ, Read MG, Santa Ana CA, Morawski SG, Fordtran JS. Chronic diarrhea of unknown origin. Gastroenterology 1980;78:264–271.

    PubMed  CAS  Google Scholar 

  27. Holgate AM, Read NW. The effect of ileal infusion of intralipid on gastrointestinal transit, ileal flow rate and carbohydrate absorption in humans after a liquid meal. Gastroenterology 1985;88:1005–1011.

    PubMed  CAS  Google Scholar 

  28. Read NW, Miles CA, Fisher D, Holgate AM, Kyme ND, Mitchell MA, Roche TB, Walker M. Transit of a meal through the stomach, small intestine and colon in normal subjects and its role in the pathogenesis of diarrhea. Gastroenterology 1980;79:1276–1282.

    PubMed  CAS  Google Scholar 

  29. Cann PA, Read NW, Brown C, Hobson N, Holdsworth CD. The irritable bowel syndrome (IBS) relationship of disorders in the transit of a single solid meal to symptom patterns. Gut 1983;24:405–411.

    Article  PubMed  CAS  Google Scholar 

  30. Cann PA, Read NW, Cammack I, Childs H, Holden S, Kashman R, Longmore I, Nix S, Simms N, Swallow K, Weiler J. Psychological stress and the passage of a standard meal through the stomach and small intestine in man. Gut 1983;24:236–240.

    Article  PubMed  CAS  Google Scholar 

  31. Evans DF, Ballantyne KC, Pegg CA, Hardcastle JD. Abnormal motility patterns in thryrotoxicosis. Dig Dis Sci 1985;30:768.

    Google Scholar 

  32. Lundh G. Intestinal digestion and absorption after partial gastrectomy. Acta Chir Scand 1958; Suppl 231:1–79.

    Google Scholar 

  33. Bond JH, Levitt MD. Use of breath hydrogen to quantitate small bowel transit following partial gastrectomy. J Lab Clin Med 1977;90:30–36.

    PubMed  CAS  Google Scholar 

  34. Madsen P, Peterson G. Postvagotomy diarrhea examined by means of a nutritional contrast medium. Scand J Gastroenterol 1968;3:545–552.

    Article  PubMed  CAS  Google Scholar 

  35. Johansson C. Studies of gastrointestinal interactions. VII. Characteristics of the absorption pattern of sugar, fat and protein from composite meals in man. A quantitative study. Scand J Gastroenterol 10:33–42.

    Google Scholar 

  36. Holgate AM, Read NW. Effect of metoclopramide on gastrointestinal transit, ileal flow rate and carbohydrate absorption in humans following a liquid meal. Br J Clin Pharmacol 1985;19:67–74.

    PubMed  CAS  Google Scholar 

  37. Collin J, Kelly KA, Phillips SF. Increased canine jejunal absorption of water, glucose and sodium with intestinal pacing. Am J Dig Dis 23:1121–1124.

    Google Scholar 

  38. Collin J, Kelly KA, Phillips SF. Absorption from the jejunum is increased by forward and backward pacing. Br J Surg 1979;66:489–492.

    Article  PubMed  CAS  Google Scholar 

  39. Bjork S, Phillips SF, Kelly KA. Mechanism of enhanced intestinal absorption with electrical pacing. Gastroenterology 1984;86:1029.

    Google Scholar 

  40. Holgate AM, Read NW. The relationship between small bowel transit time and absorption of a solid meal: influence of metoclopramide, magnesium sulfate and lactulose. Dig Dis Sci 1983;28:812–819.

    Article  PubMed  CAS  Google Scholar 

  41. Launiala K. The effect of unabsorbed sucrose or mannitol induced accelerated transit of absorption in the human small intestine. Scand J Gastroenterol 1969;4:25–32.

    Article  PubMed  CAS  Google Scholar 

  42. Schiller LR, Davis GR, Santa Ana CA, Morawski SG, Fordtran JS. Studies of the mechanism of antidiarrheal effect of codeine. J Clin Invest 1982;70:999–1008.

    Article  PubMed  CAS  Google Scholar 

  43. Schiller LR, Santa Ana CA, Morawski SG, Fordtran JS. Mechanism of the antidiarrheal effect of loperamide. Gastroenterology 1984;86:1475–1480.

    PubMed  CAS  Google Scholar 

  44. Schiller LR, Santa Ana CA, Morawski SG, Fordtran JS. Studies on the antidiarrheal order of Clonidine. Effects on motility and intestinal absorption. Gastroenterology 1986;89:982–988.

    Google Scholar 

  45. Mathias JR, Carlson GM, DiMarino A J et al. Intestinal myoelectrical activity in response to live Vibrio cholerae and cholera enterotoxin. J Clin Invest 1976;58:91–96.

    Article  PubMed  CAS  Google Scholar 

  46. Cassuto J, Jodal M, Tuttle R, Lundgren O. On the role of transmural nerves in the pathogenesis of cholera toxin-induced intestinal secretion. Scand J Gastroenterol 1982;16:337.

    Google Scholar 

  47. Burns TW, Mathias JR, Carlson GM, Martin JL, Shields RP. Effect of toxigenic Escherichia coli on myoelectric activity on small intestine. Am J Physiol 1978;235:E311.

    PubMed  CAS  Google Scholar 

  48. Jodal M, Lundgren O. Effects on enterotoxins from Vibrio cholerae and Escherichia coli on intestinal fluid and electrolyte transport. In: The Relationships between Intestinal Motor Activity and Epithelial Transport (Read NW, ed). Janssen Research Foundation, Beerse, Belgium, 1987.

    Google Scholar 

  49. Mathias JR, Carlson GM, Bertiger G, Cohan S. The effect of cholera toxin on ileal myoelectric activity: A neural-hormonal mechanism. In: Proceedings of the Fifth Internal Motility Symposium (Vantrappen G, ed). Harentals, Belgium: Typoff, 1976, pp. 219–266.

    Google Scholar 

  50. Cassuto J, Jodal M, Lundgren O. The effect of nicotinic and muscarinic receptor blockade on cholera toxin induced intestinal secretion in rats and cats. Acta Physiol Scand 1982;114:573.

    Article  PubMed  CAS  Google Scholar 

  51. Cassuto J, Siewert A, Jodal M, Lundgren O. The involvement of intramural nerves in cholera toxin induced intestinal secretion. Acta Physiol Scand 1983;117:195–201.

    Article  PubMed  CAS  Google Scholar 

  52. Nilsson O, Cassuto J, Larsson P-A, Jodal M, Lidberg P, Ahlman H, Dahlstrom A, Lundgren O. 5-Hydroxytryptamine and cholera secretion: A histochemical and physiological study in cats. Gut 1983;24:542–548.

    Article  PubMed  Google Scholar 

  53. Cassuto J, Jodal M, Tuttle R, Lundgren O. 5-Hydroxytryptamine and cholera secretion: Physiological and pharmacological studies in cats and rats. Scand J Gastroenterol 1982;17:695.

    Article  PubMed  Google Scholar 

  54. Cassuto J, Fahrenkrug J, Jodal M, Tuttle R, Lundgren O. Release of vasoactive intestinal polypeptide from the cat small intestine exposed to cholera toxin. Gut 1981;22:958.

    Article  PubMed  CAS  Google Scholar 

  55. Mathias JR, Martin JL, Burns TW, Carlson GM, Shields RP. Ricinoleic acid effect on the electrical activity of the small intestine in rabbits. J Clin Invest 1978;61:640.

    Article  PubMed  CAS  Google Scholar 

  56. Atchison WD, Stewart JJ, Bass P. A unique distribution of laxative-induced spike potentials from the small intestine of the dog. Am J Dig Dis 1978;23:513.

    Article  PubMed  CAS  Google Scholar 

  57. Mathias JR, Sninsky CA, Martin JL, Fernandez A. The migrating action potential complex in a human subject: A case of surreptitious laxative abuse diagnosed by recording probe. Clin Res 1983;31:655A.

    Google Scholar 

  58. Coremans G, Chaussade S, Janssens J, Van Trappen G. Migrating action potential complexes, a motility pattern associated with diarrhea in man. Dig Dis Sci 1985b;30:765.

    Google Scholar 

  59. Mathias JR, Svinsky CA, Martin JL, Fernandez A. MAPC in a human subject, a case of surreptitious laxative abuse, diagnosed by recording probe. Clin Res 1983;31:655a.

    Google Scholar 

  60. Caren JF, Meyer JH, Grossman MI. Canine intestinal secretion during and after rapid distension of the small bowel. Am J Physiol 1974;227:183–188.

    PubMed  CAS  Google Scholar 

  61. Fuller J, Hardcastle J, Hardcastle PT. Effect of intraluminal pressure on electrical activity of rat ileal mucosa. J Physiol 1980;302:12.

    Google Scholar 

  62. Read NW, Smallwood RH, Levin RJ et al. Relationship between changes in intraluminal pressure and transmural potential difference in the human and canine jejunum in vivo. Gut 1977;18:141–151.

    Article  PubMed  CAS  Google Scholar 

  63. Ruppin H, Kachel G, Soergel KH. The association of motor events with propulsion. In: Intestinal Absorption and Secretion (Skandhauge E, Heintze K, eds). Lancaster: MTP, 1983, pp. 141–151.

    Google Scholar 

  64. Kazic T, Varagic VM. Effect of increased intraluminal pressure on the release of actycholine from the isolated guinea pig ileum. Br J Pharmacol Chemother 1968;32:185–192.

    PubMed  CAS  Google Scholar 

  65. Burke TF, Lang JP. 5-Hydroxytryptamine release into dog intestinal vasculature. Am J Physiol 1966;211:619–625.

    Google Scholar 

  66. Yagasaki O, Susuki H, Sohji J. Effects of loperamide on acetylcholine and prostaglandin release from isolated guinea pig ileum. Jap J Pharmacol 1978;28:873–883.

    Article  PubMed  CAS  Google Scholar 

  67. Beubler E, Juan H. PGE-released blood flow and transmucosal water movement after mechanical stimulation of the rat jejunal mucosa. Naun-Schmeide Arch Pharmacol 1978;305:91–95.

    Article  CAS  Google Scholar 

  68. Greenwood B, Read NW. The effect of vagal stimulation on jejunal fluid transport, transmural potential difference and intraluminal pressure in the anesthetized ferret. Am J Physiol 1986;12:G651–G654.

    Google Scholar 

  69. Greenwood B, Read NW. The neural control of jejunal and ileal motility and transmural potential difference in the ferret. Can J Physiol Pharmacol 1986;64:180–187.

    Article  PubMed  CAS  Google Scholar 

  70. Paton WDM. The action of morphine and related substances on contraction and on acetylcholine output of co-axially stimulated guinea pig ileum. Br J Pharmacol 1957;12:119–127.

    CAS  Google Scholar 

  71. Van Nueten JM, Janssen PA J, Fontaine J. Loperamide, a novel type of antidiarrheal agent. Arzneim-Forshng Drug Res 1976;24:1641–1645.

    Google Scholar 

  72. Schultz R, Wüster M, Herz A. Centrally and periferally mediated inhibition of intestinal motility by opioids. Naum-Schmeide Arch Pharmacol 1979;308:255–260.

    Article  Google Scholar 

  73. Weisbrodt NW, Sussman SE, Stewart JJ, Burks TF. Effect of morphine sulfate on intestinal transit and myoelectric activity of the small intestine of the rat. J Pharmacol Exp Ther 1980;214:333–338.

    PubMed  CAS  Google Scholar 

  74. Pruitt DB, Grubb MN, Jaquette DC, Burns TF. Intestinal effects of 5-hydroxytryptamine and morphine in guinea pigs, dogs, cats and monkeys. Eur J Pharmacol 1974;26:298–305.

    Article  PubMed  CAS  Google Scholar 

  75. Bass P, Wiley JN. Effect of ligation and morphine on electrical and motor activity of dog duodenum. Am J Physiol 1965;208:408–413.

    Google Scholar 

  76. Gillan MGC, Pollock D. Acute effects of morphine and opioid peptides on the motility and response of rat colon to electrical stimulation. Br J Pharmacol 1980;68:381–392.

    PubMed  CAS  Google Scholar 

  77. Burks TF, Long JP. Release of intestinal 5-hydroxytryptamine by morphine and related agents. J Pharmacol Exp Ther 1967;156:267–276.

    PubMed  CAS  Google Scholar 

  78. Kreuger H. The action of morphine on the digestive tract. Physiol Rev 1931;19:618–645.

    Google Scholar 

  79. Adler HF, Atkinson AJ, Ivy AC. Effect of morphine and dilaudid on the ileum and of morphine dilaudid and atrophine on the colon of man. Arch Intern Med 1942;69:974–985.

    Google Scholar 

  80. Painter NS, Truelove SC. The intraluminal pressure patterns in diverticulosis of the colon. The effect of morphine. Gut 1964;5:207–213.

    Article  Google Scholar 

  81. Garrett JM, Sauer WG, Moertel CG. Colonic motility in ulcerative colitis after opiate administration. Gastroenterology 1967;53:93–100.

    PubMed  CAS  Google Scholar 

  82. Ruppin H, Kachel G, Soergel KH. The association of motor events with propulsion. In: Intestinal Absorption and Secretion (Skadhauge E, Heintze K, eds). Lancaster: MTP, 1983, p. 141.

    Google Scholar 

  83. Sandhu B, Tripp JH, Candy DCA, Harries JT. Loperamide inhibits cholera toxin induced small intestinal secretion. Lancet 1979;1:689–690.

    Article  Google Scholar 

  84. Hughes S, Higgs NB, Turnberg LA. Loperamide has antisecretory activity in the human jejunum in vivo. Gut 1984;25:931–935.

    Article  PubMed  CAS  Google Scholar 

  85. Farack VM, Laeshke K. Inhibition by loperamide of deoxycholic acid induced intestinal secretion. Naun-Schmeid Arch Pharmacol 1984;325:286–289.

    Article  CAS  Google Scholar 

  86. Moriarty KJ, Rolston DDK, Kelly MH, Shield M, Clark M. Nufenoxole, a new antidiarrheal agent, inhibits fluid secretion in the human jejunum. Gut 1985;26:75–80.

    Article  PubMed  CAS  Google Scholar 

  87. Chang EB, Field M, Miller RJ. Alpha 2 adrenergic receptor regulation of ion transport in rabbit ileum. Am J Physiol (Gastrointest Liver Physiol) 1982;242:G237–G242.

    CAS  Google Scholar 

  88. Field M, McColl I. Ion transport in rabbit ileal mucosa, III. Effects of catecholamines. Am J Physiol 1973;225:852–857.

    PubMed  CAS  Google Scholar 

  89. Nakaki T, Nakadate T, Yamazmoto S, Kato K. Alpha 2 adrenergic inhibition of intestinal secretion induced by prostaglandin E1, vasoactive intestinal peptide and dibutyryl cyclic AMP in rat jejunum. J Pharmacol Exp Ther 1982;220:637–641.

    PubMed  CAS  Google Scholar 

  90. Edwards CA, Read NW. The effect of lidamidine, a proposed alpha2 receptor agonist, on salt and water transport in the human jejunum. Dig Dis Sci 1986;31:817–821.

    Article  PubMed  CAS  Google Scholar 

  91. Chang EB, Field M, Miller RJ. Enterocyte alpha2 adrenergic receptors: Yohimbine and p-aminoclonidine binding relative to ion transport. Am J Physiol (Gastrointest Liver Physiol 7) 1983;244:G76–G82.

    CAS  Google Scholar 

  92. Mathias JR, Clench MM, Davis RH, Sninsky CA, Pineiro-Carrero VM. Migrating action potential complex, unmasked by 6-hydroxydopamine. Am J Physiol 1985;12:G416–G420.

    Google Scholar 

  93. Debongnie JC, Phillips SF. Capacity of the human colon to absorb fluid. Gastroenterology 1978;74:698–703.

    PubMed  CAS  Google Scholar 

  94. Sanders DR, Wiggins HS. Conservation of mannitol, lactulose and raffinose by the human colon. Am J Physiol 1981; G397-G402.

    Google Scholar 

  95. McNeil NI, Cummings JA, James WPT. Short chain fatty acid absorption by the human large intestine. Gut 1978;19:819–822.

    Article  PubMed  CAS  Google Scholar 

  96. Ruppin H, Bar-Meir S, Soergel KH, Wood CM, Schmitt MG. Absorption of short chain fatty acids by the colon. Gastroenterology 1980;78:1500–1507.

    PubMed  CAS  Google Scholar 

  97. Read NW. Diarrhea: Failure of colonic salvage. Lancet 1982;2:481–483.

    Article  PubMed  CAS  Google Scholar 

  98. Spiller RC, Brown ML, Phillips SF. Segmental colonic function in experimental steatorrhoea. Decreased capacities of the proximal colon. Gut 1985;26:A1136–A1137.

    Google Scholar 

  99. Ritchie J. In: The GI tract in stress and psychological disorder (Almy TP, Fielding JF, eds). Clin Gastroenterol 1977;6:622–631.

    Google Scholar 

  100. Whitehead WE, Engel BT, Schuster MM. Irritable bowel syndrome: physiological and psychological differences between diarrhea predominant and constipation predominant patients. Dig Dis Sci 1980;404–412.

    Google Scholar 

  101. Schuster MM. Anorectal disorder in the irritable bowel syndrome. In: Irritable Bowel Syndrome (Read NW, ed). London: Grune and Stratton, 1985, pp. 191–200.

    Google Scholar 

  102. Narducci R, Bassatti G, Gaburni M, Farroni F, Marelli A. Nifedipine reduces the colonic motor response to eating in patients with the irritable colon syndrome. Am J Gastroenterol 1985;80:317–319.

    PubMed  CAS  Google Scholar 

  103. Read MG, Read NW, Barber DC, Duthie HL. Effects of loperamide on anal sphincter function in patients complaining of chronic diarrhea with fecal incontinence and urgency. Dig Dis Sci 1982;29:239–247.

    Google Scholar 

  104. Harford WV, Kregs GJ, Santa Ana C, Fordtran JS. Acute effect of diphenoxylate with atropine (lomotil) on patients with chronic diarrhea and fecal incontinence. Gastroenterology 1980;78:440–443.

    PubMed  CAS  Google Scholar 

  105. Palmer KR, Corbett CL, Holdsworth CD. Double blind cross over study comparing loperamide, codeine and kiphenoxylate in the treatment of chronic diarrhea. Gastroenterology 1980;79:1272–1275.

    PubMed  CAS  Google Scholar 

  106. Dupont HL, Hornick RS. Adverse effect of lomotil therapy in Shigellosis. J Am Med Assoc 1973;226:1525–1528.

    Article  CAS  Google Scholar 

  107. Rao SSC, Read NW, Bruce C, Brown C, Holdsworth CD. Abnormalities in bowel transit in patients with ulcerative colitis. Gastroenterology 1987;93:1013–1019.

    Google Scholar 

  108. Bank S, Saunders SJ, Marks IN, Novis BM, Barbezat GO. Gastrointestinal and hepatic disease. In: Drug Treatment Principles and Practice of Clinical Pharmacology and Therapeutics (Avery GS, ed). Sydney: ADIS Press; Edinburgh: Churchill Livingstone, 1976, pp. 520–539.

    Google Scholar 

  109. Economou G, Ward-McQuiad JN. A crossover comparison of the effects of morphine, path-idine, pentazocine and phenazocine on biliary pressure. Gut 1971;12:218–221.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Publishing Corporation

About this chapter

Cite this chapter

Read, N.W. (1989). Pathophysiology of Diarrhea. In: Shaffer, E., Thomson, A.B.R. (eds) Modern Concepts in Gastroenterology Volume 2. Topics in Gastroenterology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0781-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0781-5_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8079-8

  • Online ISBN: 978-1-4613-0781-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics