Structure of Laser Modified Surface Layers of AlZn Alloys

  • V. Synecek
  • J. Lasek
  • P. Bartuska
  • M. Simerská


Specific features of laser treatment of metals arise from the possibility of supplying large amount of energy on a small area of metal surface1–4. The heat input is also substantially faster than its output by heat conduction of the material. Only very thin surface layers are therefore heated up during a locally short interval of laser exposure. Both the fraction of incident beam energy available for rapid heating and the rate of subsequent cooling determine the influence of laser treatment on the structure of material. The final structure is thus affected by both the optical (absorptivity) and the thermal (thermal conductivity and thermal diffusivity) properties of the material. The absorptivity of clean smooth solid metal surfaces is rather low (for polished aluminum at room temperature it is about two per cent only) and depends on both their temperature and the wavelength of laser radiation.


Laser Treatment Heat Affected Zone Laser Welding Columnar Cell Laser Surface Melting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. W. Duley, “CO2 Lasers”, Academic Press, New York-San Francisco-London (1976).Google Scholar
  2. 2.
    W. W. Duley, “Laser Processing and Analysis of Materials”, Plenum Press, New York and London (1983).Google Scholar
  3. 3.
    “Laser Materials Processing” ed. by M. Bass, North-Holland, Amsterdam — New York — Oxford (1983).Google Scholar
  4. 4.
    J. T. Luxon and D. E. Parker, “Industrial Lasers and their Applications”, Prentice-Hall, Englewood Cliffs, New Jersey (1985).Google Scholar
  5. 5.
    J. W. Zindel, J. T. Stanley, R. D. Field, and H. L. Fraser, Microstructures of Rapidly Solidified Aluminum Alloys, in: “Rapidly Solidified Metastable Materials”, ed. by B. H. Kear and B. C. Giessen, North-Holland, New York-Amsterdam-Oxford (1984).Google Scholar
  6. 6.
    R. Mehrabian, S. Kou, S. C. Hsu, and A. Munitz, Laser Surface Melting and Subsequent Solidification, in: “Laser-Solid Interactions and Laser Processing 1978”, ed. by S. D. Ferris, H. J. Leamy, and J. M. Poate, American Institute’of Physics, New York (1979).Google Scholar
  7. 7.
    K. N. Rao and J. A. Sekhar, Solidification of the quasi crystalline phase in the Al-Cu-Li system, Scripta Metall. 21: 805 (1987).CrossRefGoogle Scholar
  8. 8.
    M. K. El-Aldavi, Laser melting of solids, J. Appl. Phys. 60: 2256, 2260 (1986).ADSGoogle Scholar
  9. 9.
    A. V. La Rocca, Laser applications in manufacturing, Scientific American 246: 80 (1982).CrossRefGoogle Scholar
  10. 10.
    Y. Arata and I. Miyamoto, Laser welding, Technocrat 11: 33 No 5 (1978).Google Scholar
  11. 11.
    J. Mazumder, Laser welding: State of the art review, J. Metals 34:16 July (1982).Google Scholar
  12. 12.
    P. L. Antona, S. Appiano, and R. Moschini, Laser Surface Remelting and Alloying of Aluminium Alloys, in: “Laser Treatment of Materials”, ed. by B. L. Mordike, Deutsche Gesellschaft f. Metallkunde, Oberursel (1987).Google Scholar
  13. 13.
    U. Luft, H. Bergmann, and B. L. Mordike, Laser Surface Melting of Aluminium Alloys, in: “Laser Treatment of Materials”, ed. by B. L. Mordike, Deutsche Gesellschaft f. Metallkunde, Oberursel (1987).Google Scholar
  14. 14.
    H. Volmer and E. Hornbogen, Microstructure of Laser Treated Al-Si-Alloys in: “Laser Treatment of Materials”, ed. by B. L. Mordike, Deutsche Gesellschaft f. Metallkunde, Oberursel (1987).Google Scholar
  15. 15.
    G. Coquerelle and J. L. Fachinetti, Friction and Wear of Laser Treated Aluminium-Silicon Alloys, in: “Laser Treatment of Materials”, ed. by B. L. Mordike, Deutsche Gesellschaft f. Metallkunde, Oberursel (1987).Google Scholar
  16. 16.
    K. V. Rao and J. A. Sekhar, Surface solidification with moving heat source: A study of solidification parameters, Acta Metall. 35: 81 (1987).CrossRefGoogle Scholar
  17. 17.
    J. Lašek, On the influence of the average composition on the position of the coherent miscibility gap in the Al-Zn system, Czech. J. Phys. B15: 848 (1965), in German.Google Scholar
  18. 18.
    M. Simerská and V. Syneček, The mechanism of structure transformations in super-saturated Al-Zn alloys, Acta Metall. 15: 223 (1967).CrossRefGoogle Scholar
  19. 19.
    M. Simerská and P. Bartuška, The X-ray diffraction and electron microscopic investigation of stable and metastable equilibria in Al-rich Al-Zn alloys, Czech,T. Phys. B24: 553 (1974).ADSCrossRefGoogle Scholar
  20. 20.
    M. Simerská, P. Bartuška, and V. Syneček, Structure transformations in supersaturated Al-Zn alloys, Acta Cryst. A34: S304 (1978).Google Scholar
  21. 21.
    H. Löffler, V. Syneček, M. Simerská, G. Wendrock, P. Bartučka, and R. Kroggel, On the mode of decomposition of Al-Zn alloys, Phys. Stat. Solidi (a) 65: 197 (1981).ADSCrossRefGoogle Scholar
  22. 22.
    W. R. Wampler, D. M. Follstaedt, and P. S. Peercy, Pulsed Laser Annealing of Aluminum, in: “Laser and Electron-Beam Solid Interactions and Materials Processing’: ed. by J. F. Gibbons, L. D. Hess, and T. W. Sigmon, North-Holland, New York-Oxford (1981).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • V. Synecek
    • 1
  • J. Lasek
    • 1
  • P. Bartuska
    • 1
  • M. Simerská
    • 1
  1. 1.Institute of PhysicsCzechoslovak Academy of SciencesPrague 6Czechoslovakia

Personalised recommendations