Correction of Compositional Variability in the X-Ray Diffraction Phase Analysis

  • Agnes Griger


X-ray diffraction analysis is one of the most frequent and important tools in qualifying materials, both in research laboratories and in industrial practice. In most cases materials are characterized not only by their chemical composition, but also by their crystal state and the quantity of crystalline components.


Single Crystal Data Impurity Substitution Quantitative Phase Analysis Alumina Industry Atomic Scattering Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. W. Hull, J. Am. Chem. Soc. 41: 1168 (1919).CrossRefGoogle Scholar
  2. 2.
    G. L. Clark and D. H. Reynolds, Ind. Eng. Chem., Anal. Ed. 8:36 (1936).CrossRefGoogle Scholar
  3. 3.
    H. P. Klug and L. E. Alexander, Quantitative Analysis of Powder Mixtures in “X-ray Diffraction Procedures”, Wiley and Sons, New York (1954).Google Scholar
  4. 4.
    A. Bezjak, X-ray quantitative analysis of multiphase systems, Croatica Chem. Acta 33: 197 (1961).Google Scholar
  5. 5.
    R. H. Black, Quantitative diffractometric powder analysis of multicomponent mixtures, Norelco Reporter 10: 14 (1963).Google Scholar
  6. 6.
    R. F. Karlak and D. S. Burnett, Quantitative phase analysis by X-ray diffraction, Anal. Chem. 36: 1741 (1966).Google Scholar
  7. 7.
    C. A. Moore, Quantitative analysis of naturally occuring multicomponent mineral systems by X-ray diffraction, Clay and Clay Min. 16: 325 (1968).CrossRefGoogle Scholar
  8. 8.
    C. Jahanbagloo and T. Zoltai, Quantitative analysis with the aid of calculated X-ray patterns, Anal. Chem. 40: 1739 (1968).Google Scholar
  9. 9.
    F. H. Chung, Quantitative interpretation of X-ray diffraction patterns of mixtures I, J. Appl. Cryst. 7: 519 (1974).CrossRefGoogle Scholar
  10. 10.
    F. H. Chung, Quantitative interpretation of X-ray diffraction patterns of mixtures II, J. Appl. Cryst. 7: 526 (1974).CrossRefGoogle Scholar
  11. 11.
    F. H. Chung, Quantitative interpretation of X-ray diffraction patterns of mixtures III, J. Appl. Cryst. 8: 17 (1975).CrossRefGoogle Scholar
  12. 12.
    C. R. Hubbard, E. H. Evans, and D. K. Smith, The Reference Intensity Ratio I/I for computer simulated powder patterns, J. Appl. Cryst. 9: 169 (1956).CrossRefGoogle Scholar
  13. 13.
    L. S. Zevin, A method of quantitative phase analysis without standards, J. Appl. Cryst. 10: 147 (1977).CrossRefGoogle Scholar
  14. 14.
    B. Grzeta and S. Popovie, Semiquantitative X-ray diffraction method for phase analysis using additions of a foreign component, J. Appl. Cryst. 18: 80 (1985).CrossRefGoogle Scholar
  15. 15.
    E. R. Wölfel, A new method for quantitative X-ray analysis of multiphase mixtures, J. Appl. Cryst. 14:291 (1981)CrossRefGoogle Scholar
  16. 16.
    Powder Diffraction File, Inorganic Phases Alphabetical Index, International Centre for Diffraction Data, published by JCPDS (1983).Google Scholar
  17. 17.
    K. Yvon, W.Jeitschko, and E. Parthé, LAZY PULVERIX, a computer program for calculating X-ray and neutron diffraction powder patterns, J. Appl. Cryst. 10: 73 (1977).ADSCrossRefGoogle Scholar
  18. 18.
    P. Bayliss, Quantitative analysis of sedimentary minerals by powder X-ray diffraction, Powder Diffraction 1: 37 (1986).Google Scholar
  19. 19.
    V. Stefâniay, A. Griger, and T. Turmezey, Intermetallic phases in the aluminium-side corner of the AlFeSi alloy system, J. Mat. Sci. 22: 539 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    R. Thiel, Zum System a-Fe00H-a-A100H, Z. Anorg. Allg. Chem. 326: 70 (1963)CrossRefGoogle Scholar
  21. 21.
    A. Griger, L. Bottyân, and M. Feiszl-Sajó, unpublished work (1979).Google Scholar
  22. 22.
    A. Griger, Powder diffraction data for the aH intermetallic phases with slight variation in composition in the system Al-Fe-Si, Powder Diffraction 2: 31 (1987).Google Scholar
  23. 23.
    A. Griger, V. Stefâniay, and T. Turmezey, Crystallographic data and chemical compositions of aluminium-rich Al-Fe intermetallic phases, Z. Metallkunde 77: 30 (1986).Google Scholar
  24. 24.
    G. Phragmén, On the phases occurring in alloys of aluminium with copper, magnesium, manganese, iron and silicon, J. Inst. Met. 77: 489 (1950).Google Scholar
  25. 25.
    D. Munson, A clarification of the phases occurring in aluminium-rich aluminium-iron-silicon alloys, with particular reference to the ternary phase a-AIFeSi, J. Inst. Met. 95: 217 (1967).Google Scholar
  26. 26.
    G. Bârdossy, L. Bottyân, P. Gadó, A. Griger and J. Sasvâri, Automated quantitative phase analysis of bauxites, Amer. Min. 65: 135 (1980).Google Scholar
  27. 27.
    A. J. Majumdar, L. S. Valiance, and C. G. G. Born, Quantitative analysis of phase composition using X-ray diffraction methods, J. Appl. Cryst. 5: 343 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Agnes Griger
    • 1
  1. 1.ALUTERV-FKIBudapestHungary

Personalised recommendations