High Temperature Elastic Diffuse Neutron Scattering Study of the Defect Structure in TiN0.82

  • Thierry Priem
  • Brigitte Beuneu
  • Charles de Novion


Titanium mononitride TiNx has the f.c.c. rocksalt crystal structure, with nitrogen vacancies accommodating the non-stoichiometry for 0.50 < x < 1.00 (Ref. 1) For 0.5 < x < 0.6, a quadratic Ti2N superstructure, where the nitrogen vacancies are long-range ordered, of space group I41/amd and characterized by (1 1/2 0) type superlattice reflections, occurs below 800 °C. 2 For larger nitrogen concentrations (0.6 < x < 0.9), diffuse streaks were observed on electron diffraction patterns, and qualitatively interpreted in terms of short-range ordering (SRO) of nitrogen vacancies.3 However, recent X-ray diffuse scattering measurements on the isomorphous compound NbC0.72 showed that this diffuse intensity is dominated by static displacements of the metal atoms.4 Therefore, because of their larger scattering amplitudes by light atoms, neutrons should be preferred to study the ordering contribution to the diffuse scattering. This is the object of the present paper. Preliminary results on a sample cooled at room temperature have been published recently.5


Pair Potential Diffuse Intensity Diffuse Scattering Nitrogen Vacancy Transition Metal Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. E. Toth, “Transition Metal Carbides and Nitrides”, Academic Press, London (1971).Google Scholar
  2. 2.
    G Lobier and J. P. Marcon, Etude et structure d’une nouvelle phase du sous-nitrure de titane Ti2N, C.R. Acad.Sc. Paris Serie C 268:1132 (1969).Google Scholar
  3. 3.
    J. Billingham, P. S. Bell, and M. H. Lewis, Vacancy short-range order in substoichiometric transition metal carbides and nitrides with the NaC1 structure - I Electron diffraction study of the short-range ordered compounds, Acta Cryst.Sect. A 28:602 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    K Ohshima, J. Haraga, M. Morinaga, P. Georgopoulos, and J. B. Cohen, Distortion-induced scattering due to vacancies in NbC0.72, Acta Cryst.Sect. A 44:167 (1988).CrossRefGoogle Scholar
  5. 5.
    T Priem, B. Beuneu, C. H. de Novion, R. Caudron, F. Solal, and A. N. Christensen, (1/2 1/2 1/2) versus (1 1/2 0) type ordering of nitrogen vacancies in TiNx, Solid State Commun. 63:929 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    R Caudron and A. Finel, Technical Report ONERA no. 11/1221 M, 92322 Chatillon, France (1983).Google Scholar
  7. 7.
    C. R. Houska, Thermal expansion and atomic vibration amplitudes for TiC, TiN, ZrC, ZrN and pure tungsten, J.Phys.Chem:Solids 25:359 (1964).ADSCrossRefGoogle Scholar
  8. 8.
    B Borie and C. J. Sparks, The interpretation of intensity distribution from disordered binary alloys, Acta Cryst.Sect. A 27:198 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    P C. Clapp and S. C. Moss, Correlation functions of disordered binary alloys. II, Phys.Rev. 171:754 (1968).ADSCrossRefGoogle Scholar
  10. 10.
    F. Livet, unpublished.Google Scholar
  11. 11.
    J. P. Landesman, G. Treglia, P. Turchi, and F. Ducastelle, J.Physique 46:1001 (1985).CrossRefGoogle Scholar
  12. 12.
    G. Treglia, unpublished.Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Thierry Priem
    • 1
  • Brigitte Beuneu
    • 1
  • Charles de Novion
    • 1
  1. 1.CEA/IRDI/DMECN/DTech, Laboratoire des Solides IrradiésEcole PolytechniquePalaiseau CédexFrance

Personalised recommendations