Advertisement

Process Kinetics Studied by X-Ray Diffraction

  • Tomáš Havlík
  • Milan Škrobian

Abstract

An analysis can be regarded as a process of changing the degree of uncertainty with respect to the unknown values. The goal of an analysis is then to gain a maximum decrease of uncertainty. This implies that the decrease of uncertainty also describes the inadequacy of the analysis and may be considered as a measure for the amount of information obtained1,2,3. X-ray diffraction is a very powerful analytical technique since it enables to obtain a lot of information on the structure of matter: its phase composition, molecular structure, and real structure. The information content of X-ray diffraction analytical techniques can further be extended when they are applied to the examination of processes.

Keywords

Thermal Decomposition Calcium Carbonate Model Kinetic Equation Powerful Analytical Technique Great Practical Utilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Eckschlager, I. Horsák, and Z. Kodejš: “Vyhodnocováni analytických výsledka a metod”, SNTL Praha (1980) ( Czech text).Google Scholar
  2. 2.
    J. Šesták, “Mér”ení termofyzikálnich vlastností pevných látek“, Academia, Praha (1982) ( Czech version).Google Scholar
  3. 3.
    J. Fiala, Z. Melichar, Informační obsah rentgenové difrakční fázové analýzy, Chem. Listy 78:54 (1974) (Czech version).Google Scholar
  4. 4.
    C. Barriga, J. Morales, and J. L. Tirado, Changes in the kinetics of the vaterite - calcite transformation with temperature and sample crystallinity, J.Mater.Sci. 21: 947 (1986).ADSGoogle Scholar
  5. 5.
    H. Chen, Diffusivity measured by X-ray diffraction, J.Metals 10: 36 (1986).Google Scholar
  6. 6.
    M. A. Kipnis, D. A. Agievskii, Metodika kontrolya stepeni fazovykh prevratschtsenii s pomostschyu rentgenografii, Zavodskaya laboratoriya 10:24 (1984) (Russian version).Google Scholar
  7. 7.
    E. C. Furnas, in: M. E. Brown, D. Dollimore, A. K. Galwey: “Reactions in the Solid State”, Elsevier, New York (1980).Google Scholar
  8. 8.
    T. R. Ingraham, P. Marier, in: M. E. Brown, D. Dollimore, A. K. Galwey, “Reactions in the Solid State”, Elsevier, New York (1980).Google Scholar
  9. 9.
    E. T. Turkdogan, R. G. Olsson, H. A. Wriedt, and L. S. Darken, Calcination of limestone, Trans.Soc.Min.Eng. AIME: 254:9 (1973).Google Scholar
  10. 10.
    Z. Asaki, Y. Fukunaka, T. Nagase, and Y. Kondo, Thermal decomposition of limestone in a fluidized bed, Met.Transaction 5: 381 (1974).Google Scholar
  11. 11.
    F. Habashi, “Principles of Extractive Metallurgy”, vol. 1, Gordon and Breach, New York (1975).Google Scholar
  12. 12.
    D. Beruto, A. W. Searcy, in: M. E. Brown, D. Dollimore, A. K. Galwey, “Reactions in the Solid State”, Elsevier, New York (1980).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Tomáš Havlík
    • 1
  • Milan Škrobian
    • 1
  1. 1.Department of Non-Ferrous Metallurgy Metallurgical FacultyTechnical UniversityKošiceCzechoslovakia

Personalised recommendations