Thyroid Hormone Transport from Blood into Brain Cells

  • Jacob Robbins
  • Edison Goncalves
  • Mark Lakshmanan
  • Daniels Foti


The phenomenon of thyroid hormone transport encompasses a number of sequential steps beginning with their secretion by the thyroid follicles and ending with their distribution to multiple sites of metabolism and action within virtually all the body’s organs. These steps include equilibration with multiple carrier proteins in the plasma, transcapillary passage of both the hormones and the carrier proteins into extravascular spaces, entry into cells through their external membranes, and translocation to subcellular compartments and organelles. Some that are the subject of current inquiry or controversy, include the interaction of the hormones with “minor” transport protein in plasma, the kinetics of transcapillary movement, the presence of specific receptors for the carrier proteins and the hormones on endothelial and epithelial cell membranes, and specific transport mechanisms within cell organelles.


Thyroid Hormone Choroid Plexus Sodium Butyrate Mouse Neuroblastoma Mouse Neuroblastoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.W. Brightman, Morphology of blood-brain interfaces, Exp Eye Res (suppl) 25: 1 – 25 (1977).CrossRefGoogle Scholar
  2. 2.
    M. Bradbury, The Concept of the Blood-Brain Barrier, John Wiley and Sons, Chichester (1979).Google Scholar
  3. 3.
    E. Levin, Are the terms blood-brain barrier and brain capillary permeability synonomous?, Exp Eye Res (suppl) 25: 191 – 199 (1977).CrossRefGoogle Scholar
  4. 4.
    G.A. Hagen and L.A. Solberg, Jr., Brain and cerebrospinal fluid permeability to intravenous thyroid hormone, Endocrinology 95: 1398 (1974).PubMedCrossRefGoogle Scholar
  5. 5.
    W.M. Pardridge, Carrier-mediated transport of thyroid hormones through the rat blood-brain barrier: primary role of albumin-bound hormone, Endocrinology 105: 605 – 612 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    T. Terasaki and W.M. Pardridge, Stereospecificity of triiodothyronine transport into brain, liver and salivary gland: role of carrier- and plasma-protein mediated transport, Endocrinology 121: 1185 – 1191 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    W.M. Pardridge, Receptor-mediated peptide transport through the blood-brain barrier, Endocrine Rev 7: 314 – 330 (1986).CrossRefGoogle Scholar
  8. 8.
    W.M. Pardridge and E.M. Landow, Tracer kinetic model of blood brain barrier transport of plasma protein-bound ligands. Empiric testing of the free hormone hypothesis, J Clin Invest 74: 745 – 752 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    J. Robbins and M.L. Johnson, Possible significance of multiple transport proteins for the thyroid hormones, in: “Free Hormones in Blood”, A. Albertini and R.P. Ekins, eds., Elsevier Biomedical Press, Amsterdam (1982).Google Scholar
  10. 10.
    J. Prothero and A.C. Burton, The physics of blood flow in capillaries: the nature of the motion, Biophys J 1: 565 (1961).PubMedCrossRefGoogle Scholar
  11. 11.
    C. Crone, The blood-brain barrier: facts and questions, in: “Homeostasis of the Brain”, B.K. Seisjo, S.C. Sorensen, eds., Munksgaard, Copenhagen (1971).Google Scholar
  12. 12.
    J. Robbins and J.E. Rail, Proteins associated with the thyroid hormones, Physiol Rev 40:415-489 (1960).PubMedGoogle Scholar
  13. 13.
    G. Hagen and W.J. Elliott, Transport of thyroid hormones in serum and cerebrospinal fluid, J Clin Endocrinol Metab 37: 415 – 422 (1973).PubMedCrossRefGoogle Scholar
  14. 14.
    K. Felgenhauer, Protein size and cerebrospinal fluid composition, Klin Wochenschr 52: 1158 – 64 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    B. Weisner and U. Kanerz, The influence of the choroid plexus on the concentration of prealbumin in CSF, J Neurolog Sci 61: 27 – 35 (1983).CrossRefGoogle Scholar
  16. 16.
    G. Schreiber, Synthesis, processing and secretion of plasma proteins by the liver and other organs and their regulation, in: “The Plasma Proteins: Structure, Function & Genetic Control”, F.W. Putman, ed., Academic Press, Orlando (1987).Google Scholar
  17. 17.
    P.W. Dickson, A.R. Aldred, P.D. Marley, D. Bannister and G. Schreiber, Rat choroid plexus specializes in the synthesis and the secretion of transthyretin (prealbumin), J Biol Chem 261: 3475 – 3478 (1986).PubMedGoogle Scholar
  18. 18.
    J. Herbert, J.N. Wilcox, K.T.C. Pham, R.T. Fremeau, Jr., M. Zeviani, A. Dwork, D.R. Soprano, A. Makover, de W.S. Goodman, E.A. Zimmerman, J.L. Roberts and E.A. Schon, Transthyretin: a choroid-plexus specific transport protein in human brain, Neurology 36: 900 – 911 (1986).PubMedGoogle Scholar
  19. 19.
    P.W. Dickson, A.R. Aldred, J.G.T. Mentiny, P.D. Marley, W.H. Sawyer and G. Schreiber, Thyroxine transport in choroid plexus, J Biol Chem 262: 13907 – 13915 (1987).PubMedGoogle Scholar
  20. 20.
    H.F. Cserr, Physiology of the choroid plexus, Physiol Rev 51: 273 – 367 (1971).PubMedGoogle Scholar
  21. 21.
    B. Chernow, K.D. Burman, D.L. Johnson, R.A. McGuire, J.T. O’Brian, L. Wartofsky and L.P. Georges, T3 may be a better agent than T4 in the critically ill hypothyroid patient: evaluation of transport across the blood-brain barrier, Critical Care Med 11: 99 – 104 (1983).CrossRefGoogle Scholar
  22. 22.
    H. Kaciuba-Uscilko, J. Sobocinska, S. Kozlowski and A.W. Ziemba, The effect of intraventricular thyroxine administration on body temperature in dogs at rest and during physical exercise, Experentia 32: 351 – 352 (1975).Google Scholar
  23. 23.
    M. Goldman, M.B. Dratman, F.L. Crutchfield, A.S. Jennings, J.A. Maru- niak and R. Gibbons, Intrathecal triiodothyronine administration causes greater heart rate stimulation than intravenously delivered hormone, J Clin Invest 76: 1622 – 1625 (1985).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Kato, D.R. Soprano, A. Makover, K. Kato, J. Herbert and de W.S. Goodman, Localization of immunoreactive transthyretin mRNA in fetal and adult rat brain, Differentiation 31: 228 – 235 (1986).PubMedCrossRefGoogle Scholar
  25. 25.
    N.B. Saunders, Ontogeny of the blood-brain barrier, Exp Eye Res (suppl) 25: 523 – 550 (1977).CrossRefGoogle Scholar
  26. 26.
    M-J. Obregon, F. Roelfma, G. Morreale de Escobar, F. Escobar del Rey and A. Querido, Exchange of triiodothyronine derived from thyroxine with circulating triiodothyronine as studied in the rat, Clin Endocrinol 10: 305 – 315 (1979).CrossRefGoogle Scholar
  27. 27.
    E. Vigouroux, J. Clos and J. Legrand, Uptake and metabolism of exogenous and endogenous thyroxine in the brain of young rats, Horm Metab Res 11: 228 – 232 (1979).PubMedCrossRefGoogle Scholar
  28. 28.
    J. Wolff, Transport of iodide and other anions in the thyroid gland, Physiol Rev 44: 45 (1964).PubMedGoogle Scholar
  29. 29.
    J.B. Alpers and J.E. Rail, The metabolism of iodine in the cerebrospinal fluid, J Clin Endocrinol Metab 15: 1482 (1955).PubMedCrossRefGoogle Scholar
  30. 30.
    J. Wolff, R.H. Thompson and J. Robbins, Congenital goitrous cretinism due to absence of iodide-concentrating ability, J Clin Endocrinol Metab 24: 699 – 707 (1964).PubMedCrossRefGoogle Scholar
  31. 31.
    E.P. Krenning and R. Docter, Plasma membrane transport of thyroid hormone, in: “Thyroid Hormone Metabolism”, G. Hennemann, ed., p. 107-131 (1986).Google Scholar
  32. 32.
    A. Pontecorvi, M. Lakshmanan and J. Robbins, Intracellular transport of 3,5,3’-triiodo-L-thyronine in rat skeletal myoblasts, Endocrinology 121: 2145 – 2152 (1987).PubMedCrossRefGoogle Scholar
  33. 33.
    S-Y. Cheng, Characterization of binding and uptake of 3,3’,5-triiodothyronine in cultured mouse fibroblasts, Endocrinology 112: 1754 – 1762 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    S-Y. Cheng, F.R. Maxfield, J. Robbins, M.C. Willingham and I. Pastan, Receptor mediated uptake of 3,3’,5-triiodo-L-thyronine by cultured fibroblasts, Proc Natl Acad Sci USA 77: 3425 (1980).PubMedCrossRefGoogle Scholar
  35. 35.
    K.N. Prasad, Differentiation of neuroblastoma cells in culture, Physiol Rev 50: 129 – 265 (1975).Google Scholar
  36. 36.
    K.N. Prasad, Butyric acid: a small fatty acid with diverse biological functions, Life Sciences 27: 1351 – 1358 (1980).PubMedCrossRefGoogle Scholar
  37. 37.
    T. Valcana and P.S. Timiras, Nuclear triiodothyronine receptors in the developing rat, Molec Cell Endocrinol 11: 31 – 41 (1978).PubMedCrossRefGoogle Scholar
  38. 38.
    J. Ortiz-Caro, F., Montiel, A. Pascual and A. Aranda, Modulation of thyroid hormone nuclear receptors by short chain fatty acids in glial C6 cells, J Biol Chem 261: 13997 – 14004 (1986).PubMedGoogle Scholar
  39. 39.
    J.H. Oppenheimer and H.L. Schwartz, Stereospecific transport of triiodothyronine from plasma to cytosol and from cytosol to nucleus in rat liver, kidney, brain and heart, J Clin Invest 75: 147 – 154 (1985).PubMedCrossRefGoogle Scholar
  40. 40.
    A.D. Mooradian, H.L. Schwartz, C.N. Mariash and J.H. Oppenheimer, Transcellular and transnuclear transport of 3,5,3’-triiodothyronine in isolated hepatocytes, Endocrinology 117: 2449 – 2456 (1985).PubMedCrossRefGoogle Scholar
  41. 41.
    M.B. Dratman, F.L. Crutchfield, J. Axelrod, R.W. Colburn and T. Nguyen, Localization of triiodothyronine in nerve ending fractions of rat brain, Proc Natl Acad Sci USA 73: 941 – 944 (1976).PubMedCrossRefGoogle Scholar
  42. 42.
    M.B. Dratman and F.L. Crutchfield, Synaptosomal[125I] triiodothyronin after intravenous [125I]thyroxine, Am J Physiol 235: 638–647 (1978).Google Scholar
  43. 43.
    B. Grafstein and D.S. Forman, Intracellular transport in neurons, Physiol Rev 60: 1167 - 1283 (1980).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jacob Robbins
    • 1
  • Edison Goncalves
    • 1
  • Mark Lakshmanan
    • 1
  • Daniels Foti
    • 1
  1. 1.Clinical Endocrinology Branch, NDDKNIHBethesdaUSA

Personalised recommendations