Advertisement

Thermal Conductivity of Liquids in the Reduced Temperature Range 0.3 to 0.8 From Saturation Line to 350 MPa

  • G. Latini
  • F. Marcotullio
  • P. Pierpaoli
  • A. Ponticiello

Abstract

An empirical correlation is proposed to predict the liquid thermal conductivity as a function of temperature and pressure. The correlation involves explicitly the reduced temperature, the reduced pressure (or more simply the pressure) and three factors A, a, b (or b’) vhich are characteristic for each substance and, with a very close approximation, also pressure and temperature independent.

The equation was checked through experimental thermal conductivity values, generally available with an accuracy within ±1.5%, of 18 alkanes, 9 aromatics and 2 elements. Its effectiveness in the whole temperature range from normal melting point to Tr =0.8 and in the reduced pressure range from the vapour pressure to nearly 350 MPa was also clearly proved. The deviations between predicted and experimental conductivity data are ordinarily less than 2.0% whilst the maximum deviations are likewise better than 3%. Relations are finally provided to properly predict A and b’ factors.

Keywords

Thermal Conductivity Saturation Line Normal Boiling Point Normal Melting Point Benzene Toluene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. R. Roder, The Thermal Conductivity of Oxygen, J. Res. Hat. Bur. Stand. (U.S.) 86 (5): 279 (1982).Google Scholar
  2. H. R. Roder, Thermal Conductivity of Methane for Temperatures Between 110 and 310 K with Pressures to 70 MPa, Int. J. Thermophys, 6 (2): 119 (1985).CrossRefGoogle Scholar
  3. S. F. Y. Li, R. D. Trengove, W. A. Wakeham and M. Zalaf, The Transport Coefficients of Polyatomic Liquids, Int. J. Thermophys. 7 (2): 273 (1986).CrossRefGoogle Scholar
  4. S. F. Y. Li, G. C. Maitland and W. A. Wakeham, The Thermal Conductivity of Liquid Hydrocarbons, High Temp.-High Pressures 17: 241 (1985).Google Scholar
  5. U. V. Mardolcar and C. A. Nieto de Castro, The Thermal Conductivity of Liquid Methane, Chem. Phys. (Holland) in press.Google Scholar
  6. R. C. Reid, J. M. Prausnitz and B. E. Poling, Chapter 10 in “The Properties of Gases and Liquids” 4th ed. McGraw-Hill, Hew York (1987).Google Scholar
  7. G. Latini, C. Baroncini, P. Pierpaoli, Liquids under Pressure: an Analysis of Methods for Thermal Conductivity Prediction and a General Correlation, High Temp.-High Pressures 19 (1987) in press.Google Scholar
  8. H. M. Roder and C. A. Nieto de Castro, Thermal Conductivity of Ethane at Temperatures Between 110 and 325 K and Pressures to 70 MPa, High Temp.-High Pressures 17: 453 (1985).Google Scholar
  9. H. M. Roder, Experimental Thermal Conductivity Values For Hydrogen, Methane, Ethane and Propane, Nat. Bur. Stand. (U.S.) NBSIR 84- 3006, May 1984.Google Scholar
  10. V. P. BryKov, G. Kh. Mukhamedzyanov and A. G. Usmanov, Experimental Investigation of the Thermal Conductivity of Organic Liquids at Low Temperatures (in Russian), Inzh-fiz. Zh. 18 (1): 82 (1970).Google Scholar
  11. J. F. T. Pittman, Fluid Thermal Conductivity Determination by the Transient Line Source Method, Ph. D. Thesis, Imperial College of Science and Technology, Department of Chemical Engineering, London (1968).Google Scholar
  12. J. C. G. Calado, J. M. N. A. Fareleira, C. A. Nieto de Castro and W. A. Wakeham, Thermal Conductivity of Five Hydrocarbons Along the Saturation Line, Int. J. Thermophys. 4 (3): 193 (1983).CrossRefGoogle Scholar
  13. C. A. Nieto de Castro, S. F. Y. Li, A. Nagashima, R. D. Trengave and W. A. Wakeham, Standard Reference Data for the Thermal Conductivity of Liquids, J. Phys. Chem. Ref. Data 15 (3): 1073 (1986).CrossRefGoogle Scholar
  14. J. M. N. A. Fareleira, S. F. Y. Li, G. C. Maitland and W. A. Wakeham, Thermal Conductivity of Two Branched Alkanes in the Temperature Range 36-88 °C up to 0.6 GPa, High Temp.-High Pressure 16: 427 (1984).Google Scholar
  15. Y. Wada, Y. Nagasaka and A. Nagashima, Measurements and Correlation of the Thermal Conductivity of Liquid n-Paraffin Hydrocarbons and Their Binary and Ternary Mixtures, Int. J. Thermophys. 6 (3): 251 (1985).CrossRefGoogle Scholar
  16. C. A. Nieto de Castro, J. C. G. Calado and W. A. Wakeham, Thermal Conductivity of Organic Liquids Measured by a Transient Hot-Wire Technique, High Temp.-High Pressure 11: 551 (1979).Google Scholar
  17. H. Kashiwagi, M. Oishi, Y. Tanaka, H. Kubota and T. Makita, Thermal Conductivity of Fourteen Liquids in the Temperature Range 298-373 K, Int. J. Thermophys. 3 (2): 101 (1982).CrossRefGoogle Scholar
  18. Yu. L. Rastorguev, G. F. Bogatov and B. A. Grigor’ev, Thermal Conductivity of Hydrocarbons at High Pressures and Temperatures (in Russian), Teplo. Svoistva. Zhidk; Mater. Vses. Teplofiz. Konf. Svoistva. Vesch. Vys. Temp. 3rd, pp. 88–91 (1970).Google Scholar
  19. J. K. Horrocks, E. McLaughlin and A. R. Ubbenlohde, Liquid-phase Thermal Conductivities Isotopically Substituted Molecules, Tras. Faraday Soc. 59 (5): 1110 (1963).CrossRefGoogle Scholar
  20. J. C. G. Calado, U. V. Mardolcar, C. A. Nieto de Castro, H. M. Roder and W. A. Wakeham, The Thermal Conductivity of Liquid Argon, Physica, in press.Google Scholar
  21. H. M. Roder and C. A. Nieto de Castro, The Thermal Conductivity of Liquid Argon for Temperatures.Between 110 and 140 K with Pressures to 70 MPa, Int. J. Thermophys., in press.Google Scholar
  22. Y. S. Touloukian and C. Y. Ho, “Properties of Nonmetallic Elements” McGraw-Hill, New York (1981).Google Scholar
  23. H. M. Roder and C. A. Nieto de Castro, The Thermal Conductivity of Liquid Propane, J. Chem. Eng. Data 27 (1): 12 (1982).CrossRefGoogle Scholar
  24. C. A. Nieto de Castro, R. Tufeu and B. Le Neindre, Thermal Conductivity Measurement of n-Butane Over Wide Temperature and Pressure Range, Int. J. Thermophys. 4 (1): 11 (1983).CrossRefGoogle Scholar
  25. A. M. F. Palavra, W. A. Wakeham and M. Zalaf, Thermal Conductivity of Normal Pentane in the Temperature Range 306-360 K at Pressures up to 0.5 GPa, Int. J. Thermophys. 8 (3): 305 (1987).CrossRefGoogle Scholar
  26. S. F. Y. Li, G. C. Maitland and W. A. Wakeham, The Thermal Conductivity of n-Exane and n-0ctane at Pressures up to 0.64 GPa in the Temperature Range 34-90°C, Ber. Bunsenges. Phys. Chem. 88: 32 (1984).Google Scholar
  27. J. Menashe and W. A. Wakeham, Absolute Measurements of the Thermal Conductivity of Liquids at Pressures up to 500 MPa, Ber. Bunsenges. Phys. Chem. 85: 340 (1981).Google Scholar
  28. J. Menashe and W. A. Wakeham, The Thermal Conductivity of n-Nonane and n-Undecane at Pressures up to 500 MPa in the Temperature Range 35-90°C, Ber. Bunsenges. Phys. Chem. 86: 541 (1982).Google Scholar
  29. M. Mustafa,, M. Sage and W. A. Wakeham, The Thermal Conductivity of n-Tridecane at Pressures up to 500 MPa in the Temperature Range 35-75°C, Int. J. Thermophys. 3 (3): 217 (1982).CrossRefGoogle Scholar
  30. S. F. Y. Li, G. C. Maitland and W. A. Wakeham, Thermal Conductivity of Benzene and Cyclohexane in the Temperature Range 36-90°C at Pressures up to 0.33 GPa, Int. J. Thermophys. 5 (4): 351 (1984).CrossRefGoogle Scholar
  31. C. A. Nieto de Castro, S. F. Y. Li, G. C. Maitland and W. A. Wakeham, Thermal Conductivity of Toluene in the Temperature Range 35-90°C at Pressures up to 600 MPa, Int. J. Thermophys. 4 (4): 311 (1983).CrossRefGoogle Scholar
  32. C. A. Nieto de Castro, R. D. Trengave and W. A. Wakeham, The Density Dependence of the Thermal Conductivity of Toluene, Rev. Port. Quirn. ( Abril 1985 )Google Scholar
  33. H. Kashiwagi, H. Hashimoto, Y. Tanaka, H. Kubota and T. Makita, Thermal Conductivity and Density of Toluene in the Temperature Range 273-373 K at Pressures up to 250 MPa, Int. J. Thermophys. 3 (3): 201 (1982).CrossRefGoogle Scholar
  34. U. V. Mardolcar, C. A. Nieto de Castro and W. A. Wakeham, Thermal Conductivity of Argon in the Temperature Range 107 to 423 K, Int. J. Thermophys. 7 (2): 259 (1986).CrossRefGoogle Scholar
  35. H. M. Roder, Transport Properties of Oxygen, NASA Reference Publication 1102, NBSIR 82 - 1672, (April 1983).Google Scholar

Copyright information

© Purdue Research Foundation 1989

Authors and Affiliations

  • G. Latini
    • 1
  • F. Marcotullio
    • 1
  • P. Pierpaoli
    • 2
  • A. Ponticiello
    • 1
  1. 1.Dipartimento di EnergeticaUniversità de L’AquilaItalia
  2. 2.Dipartimento di EnergeticaUniversità di AnconaItalia

Personalised recommendations