Skip to main content

Dopamine Receptors And Signal Transduction

  • Chapter

Abstract

Dopamine receptors can be (and have been) identified on the basis of behavioral or physiological responses (such as turning behavior, supression of prolactin release or renal vasodilatation). However, by studying the signal transduction mechanisms used by the dopamine receptors, especially valuable insight into the identification and the classification of these receptors have been gathered. Thus, the dopamine-sensitive adenylate cyclase has proven to be a valuable model of the entity now known as the D-l receptor (Kebabian et al., 1972). Furthermore, the now widely-accepted idea that there are two classes of dopamine receptor was based, in part, on the observation that certain drugs displayed inappropriate activity in the dopamine-sensitive adenylate cyclase assay (Kebabian and Calne, 1979).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilera, G., Hyde, C.L. and Catt, K.J. (1982) Angiotensin II receptors and prolactin release in pituitary lactotrophs. Endocrinology 111:1045–1050

    Article  PubMed  CAS  Google Scholar 

  • Anderson, J.M., Yasumoto, T. and Cronin, M.J. Intracellular free calcium in rat anterior pituitary cells monitored by fura-2. Life Sci. 41:519–526 (1987)

    Article  PubMed  CAS  Google Scholar 

  • Arnt, J. (1985) Behavioural stimulation is induced by separate dopamine Dj and D2receptor sites in reserpine-pretreated but not in normal rats. Eur. J. Pharmacol. 113:79–88

    Article  PubMed  CAS  Google Scholar 

  • Attie, M.E, Brown, E.M., Gardner, D.G., Spiegel, A.M. and Aurbach, G.D. (1980) Characterization of the dopamine-responsive adenylate cyclase of bovine parathyroid cells and its relationship to parathyroid secretion. Endocrinology 107:1776–1781

    Article  PubMed  CAS  Google Scholar 

  • Battaglia, G., Norman, A.B., Hess, E.J. and Creese I. D2dopamine receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in rat striatum. Neuiosci. Lett. 59:177–182 (1985)

    Article  CAS  Google Scholar 

  • Berridge, M.J. Inositol trisphosphate and diacyglycerol as second messengers. Biochem. J. 220:345–360 (1984)

    PubMed  CAS  Google Scholar 

  • Billard, W., Ruperto, V., Crosby, G., Iorio, L.C. and Barnett, A. (1984) Characterization of the binding of 3H-SCH 23390, a selective Dlreceptor antagonist ligand, in rat striatum. Life Sci. 35:1885–1893

    Article  PubMed  CAS  Google Scholar 

  • Birnbaumer, L., Codina, J., Mattera, R., Yatani A., Scherer, N., Toro, M.-J. and Brown, A.M. Signal transduction by G proteins. Kidney Internatl. 32: S14–S37 (1987)

    Google Scholar 

  • Brown, E.M. and Aurbach, G.D. (1980) Role of cyclic nucleotides in secretory mechanisms and actions of parathyroid hormone and calcitonin. Vitam. Horm. 38:205–256

    Article  PubMed  CAS  Google Scholar 

  • Brown, J.H. and Makman, M.H. (1972) Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3′:5′-cyclic monophosphate formation in intact retina. Proc Natl Acad Sci USA 69:539–543

    Article  PubMed  CAS  Google Scholar 

  • Canonico, P.L., Valdenegio, C.A. and MacLeod, R.M. Dopamine inhibits32Pi incorporation into phos phatidylinositol in the anterior pituitary gland of the rat. Endocrinology 111:347–349 (1982)

    Article  PubMed  CAS  Google Scholar 

  • Canonico, PL., Jar vis, W.D., Judd, A.M. and MacLeod, R.M. Dopamine does not attenuate phosphoinositide hydrolysis in rat anterior pituitary cells. J. Endocrinol. 110:389–393 (1986)

    Article  PubMed  CAS  Google Scholar 

  • Chen, T.C., Cote, T.E. and Kebabian, J.W. (1980) Endogenous components of the striatum confer dopamine-sensitivity upon adenylate cyclase activity: the role of endogenous guanyl nucleotides. Brain Res 181:139–149

    Article  PubMed  CAS  Google Scholar 

  • Clement-Cormier Y.C., Parrish, R.G., Petzold, G.L., Kebabian, J.W., and Greengard, P. (1975) Characterization of a dopamine-sensitive adenylate cyclase in the rat caudate nucleus. J. Neurochem. 25:143–149

    Article  PubMed  CAS  Google Scholar 

  • Cooper, D.M.F., Bier-Laning, C.M., Halford, M.K., Alijanian, M.K. and Zahniser, N.R. Dopamine, acting "through D2receptors, inhibits rat striatal adenylate cyclase by a GTP-dependent process. Mol. Pharmacol. 29:113–119 (1986)

    PubMed  CAS  Google Scholar 

  • Cote, T.E., Grewe, C.W., Tsuruta, K., Stoof, J.C., Eskay, R.L. and Kebabian, J.W. D2dopamine receptor-mediated inhibition of adenylate cyclase activity in the intermediate lobe of the rat pituitary gland requires guanosine 5′-triphophosphate. Endocrinology 110:812–819 (1982)

    Article  PubMed  CAS  Google Scholar 

  • Cote, T.E., Grewe, C.W. and Kebabian, J.W. Stimulation of a D2 dopamine receptor in the intermediate lobe of the rat pituitary gland decreases the responsiveness of the beta-adienoceptor: Biochemical mechanism. Endocrinology 108:420–426 (1981)

    Article  PubMed  CAS  Google Scholar 

  • Cronin, M.J. and Thorner, M.D. Dopamine and bromocriptine inhibit cyclic AMP accumulation in the anterior pituitary: The effect of cholera toxin. J. Cyc. Nuc. Res. 8:267–275 (1982)

    CAS  Google Scholar 

  • Cronin, M.J., Myers, G.A., MacLeod, R.M. and Hewlett, E.L. Pertussis toxin uncouples dopamine agonist inhibition of prolactin releaes. Am. J. Physiol. 244: E499–E504 (1983)

    PubMed  CAS  Google Scholar 

  • Dannies, P.S. and Rudnick, M.S. 2-Bromo-alpha-ergocryptine causes degradation of prolactin in primary cultures of rat pituitary cells after chronic treatment. J. Biol. Chem. 255:2776–2781 (1980)

    PubMed  CAS  Google Scholar 

  • Delbeke, D. and Dannies, P.S. Stimulation of the adenosine 3′,5′′monophosphate and the Ca2+messenger systems together reverse dopaminergic inhibition of prolactin release. Endocrinology 117:439–446 (1985)

    Article  PubMed  CAS  Google Scholar 

  • Delbeke, D., Kojima, I., Dannies, P.S. and Rasmussen, H. Synergistic stimulation of prolactin release by Phorbol ester, A23187 and forskolin. Biochem. Biophys. Res. Comm. 123:735–741 (1984)

    Article  PubMed  CAS  Google Scholar 

  • Douglas, W.W. and Taraskevich, P.S. The elctrophysiology of adenohypophyseal cells. In: A.M. Poisner and J.M. Trifaro (eds.) The Electrophysiology of the Secretory Cell: ITie Secretory Process, Vol II, Elsevier Sciene Publishers, New York, 63–92 (1985)

    Google Scholar 

  • Dowling, J.E. and Watling, K.J. (1981) Dopaminergic mechanisms in the teleost retina. II. Factors affecting the accumulation of cyclic AMP in pieces of intact carp retina. J. Neurochem. 36: 569–579

    Article  PubMed  CAS  Google Scholar 

  • Enjalbert, A., Sladeczek, F., Guillon, G., Bertrand, P., Shu, C., Epelbaum, J., Garcia–Sainz, A., Jard, S., Lombard, C., Kordon, C. and Bockaert, J. Angiotensin II and dopamine modulate both cAMP and inositol phosphate productions in anterior pituitary cells J. Biol. Chem. 262:4071–4075 (1986)

    Google Scholar 

  • Enjalbert, A. and Bockaert, J. Pharmacological characterization of the D2 dopamine receptor negatively coupled with adenylate cyclase in rat anterior pituitary. Mol. Pharmacol. 23:576–584 (1983)

    PubMed  CAS  Google Scholar 

  • Fujiwara, H., Kato, N., Shuntoh, H. and Tanaka, C. D2-dopamine receptor-mediated inhibition of intracellular Ca2+mobilization and release of acetlcholine from guinea-pig neostriatal slices. Br. J. Pharmac. 91:287–297 (1987)

    CAS  Google Scholar 

  • Goldberg, L.I., Glock, D., Kohli, J.D. and Barnett, A. (1984) Separation of peripheral dopamine receptors by a selective DA1 antagonist, SCH 23390. Hypertension 6(2 Pt 2): 25–30

    Google Scholar 

  • Grace, A.A. and Bunney, B.S. Intracellular and extracellular electrophysiology of nigral dopaminergic neurons — 1. Identification and characterization. Neuroscience 10:310–315 (1983)

    Google Scholar 

  • Grace, A.A. and Bunney, B.S. Low doses of apomorphine elicit two opposing influences on dopamine cell electrophysiology. Brain Res. 333:285–298 (1985)

    Article  PubMed  CAS  Google Scholar 

  • Ingram, C.D., Bicknell, R.J. and Mason, W.T. Intracellular recordings from bovine anterior pituitary cells: Modulation of spontaneous activity by regulators of prolactin secretion. Endocrinology 119:2508–2518(1986)

    Article  PubMed  CAS  Google Scholar 

  • Innis, R.B. and Aghajanian, G.K. Pertussis toxin blocks autoreceptor–mediated inhibition of dopaminergic neurons in rat substantia nigra. Brain Res. 411:139–143 (1987)

    Article  PubMed  CAS  Google Scholar 

  • Iorio, L.C., Barnett, A., Leitz, F.H., Houser V.P., Korduba, C.A. (1983) SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J. Pharmacol. Exp. Ther. 226:462–468

    PubMed  CAS  Google Scholar 

  • Journot, L., Homburger, V., Pantaloni, C., Priam, M., Bockaert, J. and Enjalbert, A. An islet activation protein-sensitive G protein is involved in dopamine inhibition of angiotensin and thyrotropin-releasing hormone-stimulated inositol phosphate production in anterior pituitary cells. J. Biol. Chem. 262:15106–15110(1987)

    PubMed  CAS  Google Scholar 

  • Judd, A.M., Login, I.S. and MacLeod, R.M. Dopamine inhibits prolactin release and cAMP generation in the MMQ cell, a homogeneous prolactin-secreting cell line. Society for Neuroscience Abstract 13:192 (1987)

    Google Scholar 

  • Kebabian, J.W. and Calne, D.B. (1979) Multiple receptors for dopamine. Nature 277:93–96

    Article  PubMed  CAS  Google Scholar 

  • Kebabian, J.W., Petzold, G.L., and Greengard P. (1972) Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”. Proc. Natl. Acad. Sci. USA 69:2145–2149

    Article  PubMed  CAS  Google Scholar 

  • Koch, B.D. and Schonbrunn, A. Characterization of the cyclic AMP–independent actions of somatostatin in GH cells. J. Biol. Chem. 263:226–234 (1988)

    PubMed  CAS  Google Scholar 

  • Lacey, M.G., Mercuri, N.B and North R.A. Dopamine acts on D2receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J. Physiol. 392:397–416 (1987)

    PubMed  CAS  Google Scholar 

  • Malgaroli, A., Vallar, L., Elahi, F.R., Pozzan, T., Spada, A. and Meldolesi, J. Dopamine inhibits cytosolic Ca2+ increase in rat lactotroph cells. J. Biol. Chem. 262:13920–13927 (1987)

    PubMed  CAS  Google Scholar 

  • Maurer, R.A. Dopaminergic inhibition of prolactin synthesis and prolactin messenger RNA accumulation in cultured pituitary cells. J. Biol. Chem. 255:8092–8097 (1980)

    PubMed  CAS  Google Scholar 

  • Miyazaki, K., Dambrosia, J.M. Kebabian, J.W. Dopaminergic modulation of the diethylstilbestrol–induced proliferation of the anterior pituitary gland of the Fisher 344 rat. Neuroendocrinology 41:405–408 (1985)

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki, K., Goldman, M.E. and Kebabian, J.W. Forskolin stimulates adenylate cyclase activity, adenosine, 3′,5′-monophosphate production and peptide release from the intermediate lobe of the rat pituitary gland. Endocrinology 114:761–766 (1984)

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka, Y. Turnover of inositol phospholipids and signal transduction. Science 225:1365–1370 (1984)

    Article  PubMed  CAS  Google Scholar 

  • Onali, P., Schwartz, J.P. and Costa, E. Dopaminergic modulation of adenylate cyclase stimulation by vasoactive intestinal peptide in anterior pituitary. Proc. Natl. Acad. Sci. USA 78:6531–6534 (1981)

    Article  PubMed  CAS  Google Scholar 

  • Onali, P., Olianas M.C. and Gessa G.L. Characterization of dopamine receptors, mediating inhibition of adenylate cyclase activity in rat striatum. Mol. Pharmacol. 28:138–145 (1985)

    PubMed  CAS  Google Scholar 

  • Pizzi, M., D’agostini, F., DaPreda, M., Spano, P. F. and Haefely, W.E. Dopamine D2 receptor stimulation decreases the inositol trisphosphate level of rat striatal slices. Eur. J. Pharmacol. 136:263–264 (1987)

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, H., Apfeldorf, W., Barrett, P., Takuwa, N., Zawalich, W., Kreutter, D., Park, S. and Takuwa, Y. Inositol Lipids: Integration of cellular signalling systems. In: J.W. Putney (ed). Phosphoinositides and Receptor Mechanisms. Receptor Biochemistry and Methodology Series: Vol. 7, 109–147 (1986)

    Google Scholar 

  • Rodbell, M. (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284:17–22

    Article  PubMed  CAS  Google Scholar 

  • Schettini, G., Cronin, M.J. and MacLeon R.M. Adenosine 3′,5′-monophosphate (cAMP) and calcium-cal-modulin interrelation in the control of prolactin secretion: Evidence of dopamine inhibition of cAMP accumulation in prolactin release after calcium mobilization. Endocrinology 112:1801–1807 (1983)

    Article  PubMed  CAS  Google Scholar 

  • Schultz, P.J., Sedor, J.R. and Abboud, H.E. (1987) Dopaminergic stimulation of cAMP accumulation on cultured rat mesangial cells. Am. J. Physiol 253 (Heart Circ. Physiol 22) H358H–H364

    Google Scholar 

  • Sidhu, A., van Oene, J.C., Danridge P., Kaiser, C. and Kebabian, J.W. (1986) [125I]SCH 23982: the ligand of choice for identifying the D1 dopamine receptor. Eur. J. Pharmacol. 128:213–220

    Article  PubMed  CAS  Google Scholar 

  • Simmonds, S.H., Strange, P.G. Inhibition of inositol phospholipid breakdown by D2dopamine receptors in dissociated bovine anterior pituitary cells. Neurosci. Lett. 60:267–272 (1985)

    Article  PubMed  CAS  Google Scholar 

  • Stoof, J.C. and Kebabian J.W. Independent in vitro regulation by the D2dopamine receptor of dopamine-stimulated efflux of cyclic AMP and K+-stimulated release of acetylcholine from rat neostriatum. Brain Res. 250:263–270 (1982)

    Article  PubMed  CAS  Google Scholar 

  • Swennen, L. and Denef, C. Physiological concentrations of dopamine decrease adenosine 3′,5′-monophosphate levels in cultured rat anterior pituitary cells and enriched populations of lactotrophs: Evidence for a causal relationship to inhibition of prolactin release. Endocrinology 111:398–405 (1982)

    Article  PubMed  CAS  Google Scholar 

  • Trugman, J.M. and Wooten, G.E (1987) Selective D1 and D2dopamine agonists differentially alter basal ganglia glucose utilization in rats with unilaterial 6-hydroxydopamine substantia nigra lesions. J. Neurosci. 7:2927–2935

    PubMed  CAS  Google Scholar 

  • Weiss, S., Sebben, M., Garcia-Sainz J.A., and Bockaert J. D2-dopamine receptor-mediated inhibition of cyclic AMP formation in striatal neurons in primary culture. Mol. Pharacol. 27:595–599 (1985)

    CAS  Google Scholar 

  • Winiger, B.P, Wuarin, F., Zahnd, G.R., Wollheim, C.B. and Schlegel, W. Single cell monitoring of cytosolic calcium reveals subtypes of rat lactotrophs with distinct responses to dopamine and thyrotropin-releasing hormone. Endocrinology 121:2222–22228 (1987)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

MacKenzie, R.G., Kebabian, J.W. (1988). Dopamine Receptors And Signal Transduction. In: Hefti, F., Weiner, W.J. (eds) Progress in Parkinson Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0759-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0759-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8068-2

  • Online ISBN: 978-1-4613-0759-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics