Advertisement

Site-Directed Mutagenesis of Elongation Factor Tu

  • A. Parmeggiani
  • E. Jacquet
  • M. Jensen
  • P. H. Anborgh
  • R. H. Cool
  • J. Jonák
  • G. W. M. Swart

Abstract

Elongation factor Tu (EF-Tu), a monomeric protein of 393 amino acid residues (M.W. 43,000), is the most abundant protein in E.coli and one of the best studied guanine nucleotide binding proteins, a family of enzymes involved in signal transduction in higher and lower organisms (for references see Bosch et al., 1984; Gilman, 1984; Parmeggiani and Swart, 1985; Bourne, 1986). These proteins bind GTP and GDP, are able to hydrolyze GTP and show typical homologies in their primary structures, especially in the N-terminal 150–200 amino acids. The finding that the ras p21 protein, a mutant variant of which is responsible for oncogenic transformation, is a guanine nucleotide binding protein (Scolnick et al., 1979) further emphasizes the importance of this family. EF-Tu is an essential component of protein biosynthesis, acting as the carrier of aa-tRNA to the ribosome (for references, see Milled: & Weissbach, 1977). As with the other guanine nucleotide binding proteins, GTP induces the active form of the factor: only EF-Tu·GTP is capable of interacting with aa-tRNA, forming a ternary complex.

Keywords

GTPase Activity Phosphoryl Group Mutant Factor Guanine Nucleotide Binding Protein Intact Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bosch, L., Kraal B., Van der Meide, P.H., Duisterwinkel, F.J., Van Noort, 1983, Prog. Nucleic Acid Res. Mol. Biol., 20; 91–126.Google Scholar
  2. Bourne, H.R. 1986, Nature 321; 814–816.PubMedCrossRefGoogle Scholar
  3. Dente, L., Cesareni, G., Cortese, R. 1983, Nucl. Acids Res. 11; 1645–1655.PubMedCrossRefGoogle Scholar
  4. Fasano, O., Bruns, W., Crechet, J.B., Sander, G., Parmeggiani, A., 1978, Eur. J. Biochem., 124; 53–58.Google Scholar
  5. Fasano, O., De Vendittis, E., Parmeggiani, A., 1982, J. Biol. Chem., 257; 3145–3150.PubMedGoogle Scholar
  6. Gilman, A.G. 1984, Cell, 36; 577–579.PubMedCrossRefGoogle Scholar
  7. Halliday, K.R., 1983, J. Cyclic Nucl. Phosph. Res. 9; 435–448.Google Scholar
  8. Jurnak, F., 1985; Science 230; 32–36.PubMedCrossRefGoogle Scholar
  9. Kramer, W., Shughart, K., Fritz, H.-J. 1982; Nucl. Acids Res., 10; 6475–6485.PubMedCrossRefGoogle Scholar
  10. La Cour, T.F.M., Nyborg, J., Thirup, S., Clark, B.F.C., 1985, Embo J. 4; 2385–23886.PubMedGoogle Scholar
  11. Lebermann, R., Egner, U. 1984, Embo J., 3; 339–341.Google Scholar
  12. Master, S.B., Stroud, R.M., Bourne, H.R. 1986, Protein Engineering, 1; 47–54.Google Scholar
  13. McCormick, F., Clark, B.F.C., La Cour, T.F.M., Kjeldgaard, M., Norskov-Lauritsen, L., Nyborg. 1985, Science, 230; 78–82.PubMedCrossRefGoogle Scholar
  14. Miller, D.L., Weissbach H. 1977, in: “Molecular Mechanisms in Protein Biosynthesis,” Weissbach, H., Pestka, S., eds., pp. 323–373, Academic Press, New York.Google Scholar
  15. Parmeggiani, A., Sander, G. 1981, Molec. Cell Biochem., 35; 129–158.PubMedCrossRefGoogle Scholar
  16. Parmeggiani, A., Swart, G.W.M., 1985, Annu. Rev. Microbiol. 39; 557–577.PubMedCrossRefGoogle Scholar
  17. Parmeggiani, A., Anborgh, P.H., Canceill, D., Jacquet, J., Jonak, J., Merola, M., Mortensen, K.K., Swart, G.W.M. 1986, in “Structure, Function and Genetics of Ribosomes,” Hardesty, B. & Kramer, G., eds., pp. 672–685, Springer Verlag, New York.Google Scholar
  18. Permeggiani, A., Swart, G.W.M., Mortensen, K.K., Jensen, M., Dente, L., Cortese, R., 1987, Proc. Natl. Acad. Sci., in print, U.S.A.Google Scholar
  19. Remaut, E., Tsao, H., Fiers W. 1983, Gene, 22; 103–113.PubMedCrossRefGoogle Scholar
  20. Scolnick, E.M., Papageorge A.G., Shih, T.Y. 1979, Proc. Natl. Acad. Sci., U.S.A., 76; 5335–5339.CrossRefGoogle Scholar
  21. Swart, G.W.M., Merola, M., Guesnet, J., Parmeggiani, A. 1984, in “Metabolism and Enzymology of Nucleic Acids Including Gene Manipulations 5, Zelinka, J. & Balan, J., eds., pp. 277–288, Slovak Academy of Sciences, Bratislava.Google Scholar
  22. Swart, G.W.M., Parmeggiani, A., Kraal, B., Bosch, L., 1987, Biochemistry. 26; 2047–2054.PubMedCrossRefGoogle Scholar
  23. Swart, G.W.M., 1987, in “The Polypeptide Chain Elongation Factor Tu from E.coli. Characterization of Mutants and Protein Engineering,” Ph.D. Thesis, Leiden, pp. 83–119.Google Scholar
  24. Van der Meide, P.H., Vijgenboom, E., Talens, A., Bosch, L. 1983, Eur. J. Biochem., 130; 397–407.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • A. Parmeggiani
    • 1
  • E. Jacquet
    • 1
  • M. Jensen
    • 3
  • P. H. Anborgh
    • 1
  • R. H. Cool
    • 1
  • J. Jonák
    • 2
  • G. W. M. Swart
    • 4
  1. 1.Laboratoire de BiochimieLaboratoire Associé du CNRS n°240 Ecole PolytechniquePalaiseau CedexFrance
  2. 2.Czechoslovak Academy of SciencesInstitute of Molecular GeneticsPraha 6Czechoslovakia
  3. 3.Division of Biostructural Chemistry, Department of ChemistryAarhus UniversityAarhus CDenmark
  4. 4.EMBLHeidelberg, MayerhofstrasseGermany

Personalised recommendations