Skip to main content

Spin-Label Oximetry

  • Chapter
Spin Labeling

Part of the book series: Biological Magnetic Resonance ((BIMR,volume 8))

Abstract

Molecular oxygen is paramagnetic and gives strong EPR signals in the gas phase. At sufficiently low pressure the number of observed lines is large indeed (see Figure 1 obtained at 180 micron pressure). Tinkham and Strandberg (1955a, 1955b) developed the theory for the spectrum of molecular oxygen and were able to assign 120 lines observed at X-band. As the pressure increases, the linewidths increase greatly. Even at atmospheric pressure, intense EPR signals can be detected from molecular oxygen (Figure 2). However, to the authors’ best knowledge no EPR spectra have been reported from oxygen dissolved in fluids near room temperature. Apparently lines are so broadened as to be undetectable. Thus there seems to be no possibility for the directdetection of oxygen in biological systems using magnetic resonance techniques. However, an indirect method does exist and is the subject of this chapter. Bimolecular collisions of oxygen with free radicals (and we consider particularly spin labels) alter the resonance characteristics of the radical. As will become apparent, it is a remarkable fact that effects can be detected at dissolved oxygen concentrations as low as 10−7M in a measurement that requires only a few seconds. This method has been called “spin-label oximetry.” The National Biomedical ESR Center has been active in the development of the field. A rigorous foundation has been laid down, and it is believed that the method can be applied with confidence to a wide range of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ankel, E., Felix, C. C., and Kalyanaraman, B., 1986, The use of spin-label oximetry in the study of photodynamic inactivation of Chinese hamster ovary cells, Photochem. Photobiol. 44:741–746.

    Article  PubMed  CAS  Google Scholar 

  • Backer, J. M., Budker, V. G., Eremenko, S. I., and Molin, Yu. N., 1977, Determination of the kinetics of biochemical reactions with oxygen using exchange broadening in the ESR spectra of nitroxide radicals, Biochim. Biophys. Acta 460:152–156.

    Article  PubMed  CAS  Google Scholar 

  • Belkin, S., Mehlhorn, R. J., and Packer, L., 1987, Determination of dissolved oxygen in photosynthetic systems by nitroxide spin-probe broadening, Arch. Biochem. Biophys. 252: 487–495.

    Article  PubMed  CAS  Google Scholar 

  • Butler, K. W., Deslauriers, R., and Smith, I. C. P., 1986, Effects of antimalarial drugs on oxygen consumption by erythrocytes infected with Plasmodium berghei: An ESR study, Magn. Reson. Med. 3: 312–316.

    Article  PubMed  CAS  Google Scholar 

  • Deguchi, Y., 1960, Proton hyperfine spectra of diphenyl picryl hydrazyl, J. Chem. Phys. 32:1584–1585.

    Article  CAS  Google Scholar 

  • Edelstein, N., Kwok, A., and Maki, A. H., 1964, Effects of hydrostatic pressure and temperature on spin exchange between free radicals in solution, J. Chem. Phys. 41:3473–3478.

    Article  CAS  Google Scholar 

  • Freed, J. H., 1976, Theory of slow tumbling ESR spectra for nitroxides, in Spin Labeling Theory and Applications (L. J. Berliner, ed.), pp. 53–132, Academic Press, New York.

    Google Scholar 

  • Froncisz, W., Lai, C.-S., and Hyde, J. S., 1985, Spin-label oximetry: kinetic study of cell respiration using a rapid passage Tx sensitive ESR display, Proc. Natl. Acad. Sei. U.S.A. 82:411–415.

    Article  CAS  Google Scholar 

  • Gurbiel, R., Cieszka, K., Pajak, S., Subczynski, W. K., and Lukiewicz, S., 1980, Detectability of radiation damage to melanoma cells using ESR spectroscopy, Folia Histochem. Cytochem. 18:87–100.

    CAS  Google Scholar 

  • Hausser, K. H., 1960, Über den einfluss des gelösten sauerstoffs auf die linienbreite der electron- spin-resonanz in Lösung,” Naturwissenschaften 47:251.

    Article  CAS  Google Scholar 

  • Himmelblau, D. M., 1964, Diffusion of dissolved gases in liquids, Chem. Rev. 64:527–550.

    Article  CAS  Google Scholar 

  • Hitchman, M. L., 1978, Measurement of Dissolved Oxygen, Wiley, New York.

    Google Scholar 

  • Hyde, J. S., 1979, Saturation-recovery methodology, in Time Domain Electron Spin Resonance (L. Kevan and R. N. Schwartz, eds.), pp. 1–30, Wiley, New York.

    Google Scholar 

  • Hyde, J. S., and Froncisz, W., 1986, Loop-gap resonators, in Electron Spin Resonance (M. C. R. Symons, ed.), Vol. 10, pp. 175–184, Specialist Periodical Reports, The Royal Society of Chemistry.

    Chapter  Google Scholar 

  • Hyde, J. S., and Hyde, D. A., 1981, Determination of T2 from analysis of wings of symmetrical inhomogeneous lines, J. Magn. Reson. 43:137–140.

    CAS  Google Scholar 

  • Hyde, J. S., and Sarna, T., 1978, Magnetic interactions between nitroxide free radicals and lanthanides or Cu2+ in liquids, J. Chem. Phys. 68:4439–4447.

    Article  CAS  Google Scholar 

  • Hyde, J. S., and Subczynski, W. K., 1984, Simulation of ESR spectra of the oxygen-sensitive spin-label probe CTPO, J. Magn. Reson. 56:125–130.

    CAS  Google Scholar 

  • Hyde, J. S., Swartz, H. M., and Antholine, W. E., 1979, The spin-probe—spin-label method, in Spin Labeling II. Theory and Applications (L. J. Berliner, ed.), pp. 71–113, Academic Press, New York.

    Google Scholar 

  • Ingalls, R. B., and Pearson, G. A., 1961, A basis for the determination of dissolved oxygen by electron spin resonance spectroscopy, Anal. Chim. Acta 25:566–569.

    CAS  Google Scholar 

  • Kalyanaraman, B., Feix, J. B., Sieber, F., Thomas, J. P., and Girotti, A. W., 1987, Photodynamic action of Merocyanine 540 on artificial and natural cell membranes: Involvement of singlet molecular oxygen, Proc. Natl. Acad. Sei. U.S.A. 84:2999–3003.

    Article  CAS  Google Scholar 

  • Korytowski, W., Sarna, T., Kalyanaraman, B., and Sealy, R. C., 1987, Tyrosinase-catalyzed oxidation of DOPA and related catechol(amine)s: a kinetic electron spin resonance investigation using spin-stabilization and spin label oximetry, Biochim. Biophys. Acta 924:383–392.

    PubMed  CAS  Google Scholar 

  • Kusumi, A., Subczynski, W. K., and Hyde, J. S., 1982, Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels, Proc. Natl. Acad. Sei. U.S.A. 79:1854–1858.

    Article  CAS  Google Scholar 

  • Lai, C.-S., Hopwood, L. E., Hyde, J. S., and Lukiewicz, S., 1982, ESR studies of 02 uptake by Chinese hamster ovary cells during the cell cycle, Proc. Natl. Acad. Sei. U.S.A. 79:1166–1170.

    Article  CAS  Google Scholar 

  • Lakowicz, J. R., 1982, Diffusive transport of oxygen through proteins and membranes quantified by fluorescence quenching, in Hemoglobin and Oxygen Binding, Vol. 1 (C. Ho et al., eds.), Elsevier, New York, pp. 443–448.

    Google Scholar 

  • Molin, Yu. N., Salikhov, K. M., and Zamaraev, K. I., 1980, Spin Exchange, Springer-Verlag, Berlin.

    Google Scholar 

  • Moro, G., and Freed, J. H., 1981, Calculation of ESR spectra and related Fokker-Planck forms by the use of the Lanczos algorithm, J. Chem. Phys. 74:3757–3773.

    Article  CAS  Google Scholar 

  • Morse II, P. D., and Swartz, H. M., 1985, Measurement of intracellular oxygen concentration using the spin label TEMPOL, Magn. Reson. Med. 2:114–127.

    Article  PubMed  Google Scholar 

  • Nemzek, T. L., and Ware, W. R., 1975, Kinetics of diffusion-controlled reactions: transient effects in fluorescence quenching, J. Chem. Phys. 62:477–489.

    Article  CAS  Google Scholar 

  • Pajak, S., Hopwood, L. E., Hyde, J. S., Felix, C. C., Sealy, R. C., Kushnaryov, V. M., and Hatchell, M. C., 1983, Melanin endocytosis by cultured mammalian cells: A model for melanin in a cellular environment, Exp. Cell Res. 149:513–526.

    Article  PubMed  CAS  Google Scholar 

  • Pajak, S., Subczynski, W., Panz, T., and Lukiewicz, S., 1980, Rate of oxygen consumption of hamster melanoma cells as a factor influencing their radio resistance, Folia Histochem. Cytochem. 18:33–40.

    CAS  Google Scholar 

  • Pake, G. E., and Tuttle, T. R., Jr., 1959, Anomalous loss of resolution of paramagnetic resonance hyperfine structure in liquids, Phys. Rev. Lett. 3:423–425.

    Article  CAS  Google Scholar 

  • Popp, C. A., and Hyde, J. S., 1981, Effects of oxygen on EPR spectra of nitroxide spin-label probes of model membranes, J. Magn. Reson. 43:249–258.

    CAS  Google Scholar 

  • Povich, M. J., 1975a, Measurement of dissolved oxygen concentrations and diffusion coefficients by electron spin resonance, Anal. Chem. 47:346–347.

    Article  CAS  Google Scholar 

  • Povich, M. J., 1975b, Electron spin resonance oxygen broadening, J. Phys. Chem. 79:1106–1109.

    Article  CAS  Google Scholar 

  • Reszka, K., and Sealy, R. C., 1984, Photooxidation of 3,4-dihydroxyphenylalanine by hemato-porphyrin in aqueous solutions: An electron spin resonance study using 2,2,6,6-tetramethyl-4- piperidone-l-oxyl (TEMPONE), Photochem. Photobiol. 39:293–299.

    Article  PubMed  CAS  Google Scholar 

  • Salikhov, K. M., Doctorov, A. B., Molin, Yu. N., and Zamaraev, K. I., 1971, Exchange broadening of ESR lines for solutions of free radicals and transition metal complexes, J. Magn. Reson. 5:189–205.

    CAS  Google Scholar 

  • Sarna, T., and Sealy, R. C., 1984, Photoinduced oxygen consumption in melanin systems. Action spectra and quantum yields for eumelanin and synthetic melanin, Photochem. Photobiol. 39:69–74.

    Article  PubMed  CAS  Google Scholar 

  • Sarna, T., Duleba, A., Korytowski, W., and Swartz, H., 1980, Interaction of melanin with oxygen, Arch. Biochem. Biophys. 200:140–148.

    Article  PubMed  CAS  Google Scholar 

  • Sarna, T., Menon, I. A., and Sealy, R. C., 1984, Photoinduced oxygen consumption in melanin systems—II. Action spectra and quantum yields for pheomelanins, Photochem. Photobiol. 39:805–809.

    Article  PubMed  CAS  Google Scholar 

  • Sealy, R. C., Sarna, T., Wanner, E. J., and Reszka, K., 1984, Photosensitization of melanin: An electron spin resonance study of sensitized radical production and oxygen consumption, Photochem. Photobiol. 40:453–459.

    Article  PubMed  CAS  Google Scholar 

  • St.-Denis, C. E., and Fell, C. J. D., 1971, Diffusivity of oxygen in water, Can. J. Chem. Eng. 49:885.

    Article  CAS  Google Scholar 

  • Strzalka, K., Sarna, T., and Hyde, J. S., 1986, ESR oximetry: Measurement of photosynthetic oxygen evolution by spin-probe technique, Photobiochem. Photobiophys. 12:67–71.

    CAS  Google Scholar 

  • Subczynski, W. K., and Hyde, J. S., 1981, The diffusion-concentration product of oxygen in lipid bilayers using the spin-label T1 method, Biochim. Biophys. Acta 643:283–291.

    Article  PubMed  CAS  Google Scholar 

  • Subczynski, W. K., and Hyde, J. S., 1983, Concentration of oxygen in lipid bilayers using a spin-label method, Biophys. J. 41:283–286.

    Article  PubMed  CAS  Google Scholar 

  • Subczynski, W. K., and Hyde, J. S., 1984, Diffusion of oxygen in water and hydrocarbons using an electron spin resonance spin label technique, Biophys. J. 45:743–748.

    Article  PubMed  CAS  Google Scholar 

  • Subczynski, W. K., and Kusumi, A., 1985, Detection of oxygen consumption during very early stages of lipid peroxidation by ESR nitroxide spin probe method, Biochim. Biophys. Acta 821:259–263.

    Article  PubMed  CAS  Google Scholar 

  • Subczynski, W. K., Lukiewicz, S., and Hyde, J. S., 1986, Murine in-vivo L-band ESR spin-label oximetry with a loop-gap resonator, Magn. Reson. Med. 3:747–754.

    Article  PubMed  CAS  Google Scholar 

  • Swartz, H. M., 1987, The use of nitroxides to measure redox metabolism in cells and tissues, J. Chem. Soc., Faraday Trans. 1, 83:191–202.

    Article  CAS  Google Scholar 

  • Tinkham, M., and Strandberg, M. W. P., 1955a, Theory of the fine structure of the molecular oxygen ground state, Phys. Rev. 97:937–951.

    Article  CAS  Google Scholar 

  • Tinkham, M., and Strandberg, M. W. P., 1955b, Interaction of molecular oxygen with a magnetic field, Phys. Rev. 97:951–966.

    Article  CAS  Google Scholar 

  • Windrem, D. A., and Plachy, W. Z., 1980, The diffusion-solubility of oxygen in lipid bilayers, Biochim. Biophys. Acta 600:655–665.

    Article  PubMed  CAS  Google Scholar 

  • Yin, J.-J., and Hyde, J. S., 1987a, Application of rate equations to ELDOR and saturation recovery experiments on 14N–15N spin-label pairs, /. Magn. Reson. 74:82–93.

    CAS  Google Scholar 

  • Yin, J.-J., and Hyde, J. S., 1987b, Spin-label saturation-recovery electron spin resonance measurements of oxygen transport in membranes, Z. Phys. Chem. (Frankfurt Am Main) 153:S, 57–65.

    CAS  Google Scholar 

  • Yin, J.-J., Pasenkiewicz-Gierula, M., and Hyde, J. S., 1987, Lateral diffusion of lipids in membranes by pulse saturation recovery electron spin resonance, Proc. Natl. Acad. Sci. U.S.A. 84:964–968.

    Article  PubMed  CAS  Google Scholar 

  • Yin, J.-J., Feix, J. B., and Hyde, J. S., 1988, Solution of the nitroxide spin label spectral overlap problem using pulse electron spin resonance, Biophys. J. 53:525–531.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Hyde, J.S., Subczynski, W.K. (1989). Spin-Label Oximetry. In: Berliner, L.J., Reuben, J. (eds) Spin Labeling. Biological Magnetic Resonance, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0743-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0743-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8060-6

  • Online ISBN: 978-1-4613-0743-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics