Spin Labeling pp 615-634 | Cite as

Approaches to the Chemical Synthesis of 15N and Deuterium Substituted Spin Labels

  • Jane H. Park
  • Wolfgang E. Trommer
Part of the Biological Magnetic Resonance book series (BIMR, volume 8)


With the increasing application of EPR to an expanding field of biomedical problems, the importance of the design and synthesis of spin labels intensifies. The spin label itself can either significantly enhance the productivity of an investigation or constitute the limiting factor. As illustrated in Chapter 11, isotopic substitution of 15N and/or deuterium in the spin probes substantially improves the quality and quantity of information obtained in the areas of enzyme catalysis and membrane characterization. The same design principles apply to 14N,1H and 15N,2H spin labels; however, the syntheses of isotopically substituted compounds present special problems due to the expense of the isotopes and the stringent requirements for isotopic purity in the product. These problems are addressed in detail in Sections 2-4 below. In Chapter 11 and this Appendix, a circumscribed number of isotopically substituted spin labels have been selected to illustrate the potential for dynamic motional analyses. The scope of the presentation is limited in part by the number of papers available in this relatively new area of isotopic substitution and by the authors’ intent to focus on subjects of interest to the biomedical scientist and molecular biologist.


Spin Label Spin Probe Lithium Chloride Isotopic Substitution Anhydrous Ether 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bates, B. A., Johnson, M. E., and Currie, B. L., 1983, Stable isotope substituted spin labels. 2. An improved synthesis of perdeuterio-15N-(1-oxyl-2,2,6,6-tetramethyl-4- piperidinyl)maleimide, J. Labelled Compd. Radiopharm. 20:33–38.CrossRefGoogle Scholar
  2. Beth, A. H., Venkataramu, S. D., Balasubramanian, K., Robinson, B. H., Dalton, L. R., Pearson, D. E., Park, C. R., and Park, J. H., 1981, 15N and deuterium substituted maleimide spin labels: Improved sensitivity and resolution for biological studies, Proc. Natl. Acad. Sci. U.S.A. 78:967–971.PubMedCrossRefGoogle Scholar
  3. Beth, A. H., Robinson, B. H., Cobb, C. E., Dalton, L. R., Trommer, W. E., Birktoft, J. J., and Park, J. H., 1984, Interactions and spatial arrangement of spin-labeled NAD+bound to glyceraldehyde-3-phosphate dehydrogenase: Comparison of EPR and x-ray modeling data, J. Biol. Chem. 259:9717–9728.PubMedGoogle Scholar
  4. Brenner, M., and Huber, W., 1953, Preparation of α-amino acid esters by alcoholysis of the methyl esters, Helv. Chim. Acta 36:1109–1112.CrossRefGoogle Scholar
  5. Chiarelli, R, and Rassat, A., 1973, Syntheses de radicaux nitroxydes deuteries, Tetrahedron 29:3639–3647.CrossRefGoogle Scholar
  6. Claude, P., 1987, Untersuchungen zur Strukur-Funktionsbeziehung der F1TPase mit Hilfe von Spin-Label- und Photoaffinity-Spin-Label-Nucleotiden, Doctoral thesis, University of Kaiserslautern, Kaiserslautern, West Germany.Google Scholar
  7. Cocco, L., and Blakley, R. L., 1979, Synthesis of a spin-labeled analogue of nicotinamide adenine dinucleotide phosphate and its interaction with dihydrofolate reductase, Biochemistry 18:2414–2419.PubMedCrossRefGoogle Scholar
  8. Crowder, M. S., and Cooke, R., 1987, Orientation of spin-labeled nucleotides bound to myosin in glycerinated muscle fibers, Biophys. J. 51:323–333.PubMedCrossRefGoogle Scholar
  9. Deparade, M. P., and Trommer, W. E., 1979, The binding of spin-labeled derivatives of NAD+and its structural components to pig skeletal muscle lactate dehydrogenase, Biochim. Biophys. Acta 568:177–182.PubMedGoogle Scholar
  10. Deparade, M. P., Glöggler, K., and Trommer, W. E., 1981, Isolation and properties of glyceral- dehyde-3-phosphate dehydrogenase from a sturgeon from the Caspian sea and its interaction with spin-labeled NAD+derivatives, Biochim. Biophys. Acta 659:422–433.PubMedGoogle Scholar
  11. Furusawa, K., Sekine, M. and Hata, T., 1976, Studies on pyrophosphates. Part III. A new method for the synthesis of nucleotide coenzymes by means of di-n-butylphosphoinothioyl bromide, J. Chem. Soc., Perkin Trans. 1: 1711–1718.CrossRefGoogle Scholar
  12. Gaffney, B. J., 1976, The chemistry of spin labels, in Spin Labeling Theory and Applications(L. J. Berliner, ed.), pp. 183–272, Academic Press, New York.Google Scholar
  13. Gajewska, J., Bierzynski, A., Bolewska, K., Wierzchowski, K. L., Petrov, A. I., and Sukhorukov, B. I., 1982, Fluorescence quenching and spin-label electron spin resonance studies of stacking self-association in aqueous solutions of 2-aminopurine riboside and its 5’-mono- and diphosphate, Biophys. Chem. 15:191–204.PubMedCrossRefGoogle Scholar
  14. Garcia, C., Coan, C., and Verjovski-Almeida, S., 1987, Binding of spin-labeled ATP and AMP-PCP to SR ATPase: Evidence for two distinct sites, Biophys. J. 51:401 A.Google Scholar
  15. Glöggler, K. G., 1981, Synthese und Anwendung spinmarkierter Coenzyme zur Aufkläring der Wirkungsmechanismen von Enzymen, Doctoral thesis, University of Stuttgart, West Germany.Google Scholar
  16. Glöggler, K. G., Fritzsche, T. M., Huth, H., and Trommer, W. E., 1981, Synthesis and preliminary biochemical characterization of spin-labeled derivatives of ATP and its ‘non-cleavable’ analog, adenosine 5’- β, γ-methylenetriphosphate, Hoppe-Seyler’s Z. Physiol. Chem. 362:1561–1565.PubMedCrossRefGoogle Scholar
  17. Glöggler, K. G., Balasubramanian, K., Beth, A., Fritzsche, T. M., Park, J. H., Pearson, D. E., Trommer, W. E., and Venkataramu, S. D., 1982, The synthesis of deuterium substituted spin labeled analogues of AMP and NAD+and their use in EPR studies of lactate dehydrogenase, Biochim. Biophys. Acta 701:224–228.PubMedCrossRefGoogle Scholar
  18. Hubbell, W. L., and McConnell, B. M., 1971, Molecular motion in spin-labeled phospholipids and membranes, J. Am. Chem. Soc. 93:314–320.PubMedCrossRefGoogle Scholar
  19. Keana, J. F. W., 1978, New aspects of the synthesis and chemistry of nitroxide spin labels, Chem. Rev. 78:36–64.CrossRefGoogle Scholar
  20. Keana, J. F. W., 1979, New aspects of nitroxide chemistry, in Spin Labeling II; Theory and Applications(L. J. Berliner, ed.), pp. 115–172, Academic Press, New York.Google Scholar
  21. Keana, J. F. W., 1984, Synthesis and chemistry of nitroxide spin labels, in Spin Labeling in Pharmacology(J. L. Holtzman, ed.), pp. 1–85, Academic Press, New York.Google Scholar
  22. Petrov, A. I., and Sukhorukov, B. I., 1975, Spin-labeled nucleosides, nucleoside-5’-mono-, di- and triphosphates, Biofizika 20:965–966.PubMedGoogle Scholar
  23. Philipp, R., Mclntyre, J. O., Robinson, B. H., Huth, H., Trommer, W. E., and Fleischer, S., 1984, The synthesis of 15N- and deuterium-substituted, spin-labeled analogues of NAD+and their use in EPR studies of dehydrogenases, Biochim. Biophys. Acta 790:251–258.PubMedCrossRefGoogle Scholar
  24. Sosnovsky, G., and Konieczny, M., 1976, Preparation of triacetoneamine (4-oxo-2,2,6,6- tetramethylpiperidine), an improved method, Synthesis: 735–737.Google Scholar
  25. Streckenbach, B., Schwarz, D., and Repke, K. R. H., 1980, Analysis of phosphoryl transfer mechanism and catalytic centre geometries of transport ATPase by means of spin-labeled ATP, Biochim. Biophys. Acta 601:34–46.PubMedCrossRefGoogle Scholar
  26. Trommer, W. E., Wenzel, H. R., and Pfleiderer, G., 1974, Notiz über Synthese und biochemische Eigenschaften eines Spin-Label-Nicotinamid-Adenin-Dinucleotids, Liebigs Ann. Chem.: 1357–1359.Google Scholar
  27. Venkataramu, S. D., Pearson, D. E., Beth, A. H., Perkins, R. C., Park, C. R., and Park, J. H., 1981, Synthesis of perdeuterio-N-(1-oxyl-2,2,6,6-tetramethyl-4-piperidinyl)maleimide, a highly sensitive probe, J. Labeled Compd. Radiopharm. 18:371–383.CrossRefGoogle Scholar
  28. Venkataramu, S. D., Pearson, D. E., Beth, A. H., Balasubramanian, K., Park, C. R., and Park, J. H., 1983, Synthesis of 15N–5-doxylstearic acid for improved EPR characterization of lipid motion in biomembranes, J. Labelled Compd. Radiopharm. 20:433–445.CrossRefGoogle Scholar
  29. Venkataramu, S. D., Pearson, D. E., Beth, A. H., Park, C. R., and Park, J. H., 1985, High resolution spin labeled fatty acid: Synthesis and EPR spectral characteristics, Tetrahedron Lett. 26:1403–1406.CrossRefGoogle Scholar
  30. Vogel-Claude, P., Schäfer, G., and Trommer, W. E., 1988, Synthesis of a photoaffinity-spin-labeled derivative of ATP and its first application to F1ATPase, FEBS Lett. 227:107–109.PubMedCrossRefGoogle Scholar
  31. Weiner, H., 1969, Interaction of a spin-labeled analog of nicotinamide-adenine dinucleotide with alcohol dehydrogenase. I. Synthesis, kinetics, and electron paramagnetic resonance studies, Biochemistry 8:526–533.PubMedCrossRefGoogle Scholar
  32. Wenzel, H. R., Pfleiderer, G., Trommer, W. E., Paschenda, K., and Redhardt, A., 1976, The synthesis of spin-label derivatives of NAD+and its structural components and their binding to lactate dehydrogenase, Biochim. Biophys. Acta 452:292–301.PubMedGoogle Scholar
  33. Wenzel, H. R., and Trommer, W. E., 1977, 8-Spin-label nicotinamide adenine dinucleotide, synthesis and properties of a new spin-labelled coenzyme, FEBS Lett. 78:184–188.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jane H. Park
    • 1
  • Wolfgang E. Trommer
    • 2
  1. 1.Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleUSA
  2. 2.Department of ChemistryUniversity of KaiserslauternKaiserslauternFederal Republic of Germany

Personalised recommendations