Advertisement

Supersymmetric Quantum Fields and Infinite Dimensional Analysis

  • Arthur Jaffe
  • Andrzej Lesniewski
Part of the NATO ASI Series book series (NSSB, volume 185)

Abstract

Supersymmetric quantum fields are interesting from the point of view both of physics and of mathematics. Their interest for physics (see, e g. [35]) stems primarily from the fact that they may provide a natural framework for a unified theory of elementary interactions. In particular, recent developments in superstring theory [15] suggest that such a theory has the potential to unify gravitational forces with the strong, weak and electromagnetic forces.

Keywords

Dirac Operator Heat Kernel Loop Space Cluster Expansion Path Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez-Gaumé, L. and Ginsparg, P., Finiteness of Ricci Flat Supersymmetric Nonlinear-Models, Commun. Math. Phys. 102, 311–326 (1985).ADSMATHCrossRefGoogle Scholar
  2. 2.
    Atiyah,M,and Singer,I.,The Index of Elliptic Operators.IllAnn. Math.87546–604(1968).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Belavin, A. A., Polyakov, A. M., and Zamolodchikov, A. B., Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys B241, 333–380 (1984).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    Berezin, F. A., The Method of Second Quantization, New York, Academic Press (1966).MATHGoogle Scholar
  5. 5.
    Cecotti, S. and Girardello, L., Functional Measure, Topology and Dynamical Supersymmetry Breaking, Phys. Lett. 110B, 39–43 (1982).MathSciNetADSGoogle Scholar
  6. 6.
    Cecotti, S. and Girardello, L., Stochastic and Parastochastic Aspects of Supersymmetric Functional Measures: A New Nonperturbative Approach to Supersymmetry, Ann. Phys. 143, 81–89 (1983).MathSciNetADSGoogle Scholar
  7. 7.
    Connes, A., Noncommutative Differential Geometry, Publ. Math. I.M.E.S. 62, 41–44 (1986).Google Scholar
  8. 8.
    Getzler, E., The Degree of the Nicolai Map in Supersymmetric Quantum Mechanics, J. Funct. Anal. 73 (1987).Google Scholar
  9. 9.
    Gilkey, P., Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem, Wilmington, Del.: Publish or Perish (1984).Google Scholar
  10. 10.
    Girardello, L., Imbimbo, C., and Mukhi, S., On Constant Configurations and the Evaluation of the Witten Index, Phys. Lett. 132B, 69–74 (1983).MathSciNetADSGoogle Scholar
  11. 11.
    Glimm,J,and Jaffe,A.Singular Perturbations of Self-Adjoint OperatorsComm. Pure Appl. Math.22401–414(1963).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Glimm, J. and Jaffe, A., Quantum Physics, New York, Berlin, Heidelberg: Springer Verlag (1987).CrossRefGoogle Scholar
  13. 13.
    Glimm,J.Jaffe,A,and Spencer,T.Phase Transitions for2 4Quantum FieldsCommun.Math Phys.45203–216 (1975).MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    Glimm, J., Jaffe, A., and Spencer, T., A Convergent Expansion About Mean Field Theory, Parts I and II, Ann. Phys. (N.Y.) 101, 610-630 and 631-669 (1976).Google Scholar
  15. 15.
    Green, M., Schwarz, J., and Witten, E., Superstring Theory, Vol. I and II, Cambridge University Press, Cambridge (1987).Google Scholar
  16. 16.
    Gross, L., On the Formula of Mathews and Salam, J. Funct. Anal. 25, 162–209 (1977)MATHCrossRefGoogle Scholar
  17. 17.
    Imbrie, J., Phase Diagrams and Cluster Expansions for Low Temperature P(ϕ) 2 Models, Parts I and II. Comm. Math. Phys. 82, 261–343 (1981).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    Jaffe, A. Heat Kernel Regularization and Infinite Dimensional Analysis, in Constructive Quantum Field Theory, Canadian Mathematical Proceedings, J. Feldman and L. Rosen, eds., Amer. Math. Soc., Providence, 1988.Google Scholar
  19. 19.
    Jaffe, A. and Lesniewski, A., A priori Estimates for N = 2 Wess-Zumino Models on a Cylinder, Comm. Math. Phys., to appear.Google Scholar
  20. 20.
    Jaffe, A. and Lesniewski, A., Quantum K-Theory, in preparation.Google Scholar
  21. 21.
    Jaffe, A., Lesniewski, A., and Lewenstein, M., Ground State Structure in Supersymmetric Quantum Mechanics, Ann. Phys. 178, 313–329 (1987).MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    Jaffe, A., Lesniewski, A., Osterwalder, K., On Convergence of Inverse Functions of Operators, J. Fund. Anal., to appear.Google Scholar
  23. 23.
    Jaffe, A., Lesniewski, A., and Weitsman, J., Index of a Family of Dirac Operators on Loop Space, Comm. Math. Phys. 112, 75–88 (1987).MathSciNetADSMATHCrossRefGoogle Scholar
  24. 24.
    Jaffe, A., Lesniewski, A., and Weitsman, J., The Two-Dimensional, N = 2 Wess Zumino Model on a Cylinder, Comm. Math. Phys., to appear.Google Scholar
  25. 25.
    Jaffe, A., Lesniewski, A., and Weitsman, J., Pfaffians on Hilbert Space, J. Fund.Anal., to appear.Google Scholar
  26. 26.
    Jaffe, A., Lesniewski, A., and Weitsman, J., The Loop Space S1 —> R and Supersymmetric Quantum Fields, preprint HUTMP B-212.Google Scholar
  27. 27.
    Kato, T., Perturbation Theory for Linear Operators, Berlin, Heidelberg, New York: Springer (1984).MATHGoogle Scholar
  28. 28.
    Loday, J.-L. and Quillen, D., Cyclic Homology and the Lie Algebra Homology of Matrices, Comment. Math. Helv. 59, 565–591 (1984).MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    McCoy, B., Tracy, C., and Wu, T. T., Two-Dimensional Ising Model as an Explicitly Solvable Relativistic Field Theory: Explicit Formulas for n-Point Functions, Phys. Rev. Lett. 38, 793–796 (1977).ADSCrossRefGoogle Scholar
  30. 30.
    Pressley, A. and Segal, G., Loop Groups, Oxford, Claredon Press (1986).Google Scholar
  31. 31.
    Sato, M., Miwa, T., and Jimbo, M., Holomorphic Quantum Fields I. Publ. Res. Inst. Math. Sci., Kyoto University 14, 223–267 (1978).MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Seiler, E., Schwinger Functions for the Yukawa Model in Two Dimensions with Space-Time Cutoff, Comm. Math. Phys. 42, 163–182 (1975).MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    Seiler, E. and Simon, B., Nelson’s Symmetry and All That in the Yukawa2 and 4 3 Field Theories, Ann. Phys. 97, 470–518 (1976).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    Shenker, S. (private communication).Google Scholar
  35. 35.
    Wess, J. and Bagger, J., Supersymmetry and Supergravity, Princeton, Princeton University Press (1983).MATHGoogle Scholar
  36. 36.
    Witten, E., Dynamical Breaking of Supersymmetry, Nucl. Phys. B188, 513–554 (1981).ADSCrossRefGoogle Scholar
  37. 37.
    Witten, E., Constraints on Supersymmetry Breaking, Nucl. Phys. B202, 253–316 (1982).MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    Witten, E., Supersymmetry and Morse Theory, J. Diff. Geom. 17, 661–692 (1982).MathSciNetMATHGoogle Scholar
  39. 39.
    Witten, E., Elliptic Genera and Quantum Field Theory, Comm. Math. Phys. 109, 525–536 (1987).MathSciNetADSMATHCrossRefGoogle Scholar
  40. 40.
    Witten, E., Quantum Field Theory, Grassmannian and Algebraic Curves, Comm. Math. Phys., to appear.Google Scholar
  41. 41.
    Zamolodchikov, A. B., Conformal Symmetry and Multicritical Points in Two-Dimensional Quantum Field Theory, Soviet J. Nucl. Phys. 44, 529–533 (1986).MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Arthur Jaffe
    • 1
  • Andrzej Lesniewski
    • 1
  1. 1.Harvard UniversityCambridgeUSA

Personalised recommendations