The A-D-E Classification of Conformal Invariant Field Theories in Two Dimensions

  • Andrea Cappelli
Part of the NATO ASI Series book series (NSSB, volume 185)


Two dimensional massless quantum field theory invariant under conformal transformations is a well developed and beautiful subject [1,2,3], which finds applications in string theory [1] and critical phenomena in statistical physics [2]. We shall present results obtained at Saclay, in collaboration with C. Itzykson and J.-B. Zuber [4,5, 6 ] and we shall mainly discuss the applications to critical phenomena.


Manifold Helium Kato 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1a]
    A.M. Polyakov, Phys. Lett. 103B, 207, 211 (1981)Google Scholar
  2. [1b] D. Friedan, in “Recent Advances in Field theory and Statistical Mechanics”, Les Houches School 1982, J.B. Zuber and R. Stora editors, North Holland 1984.Google Scholar
  3. [2]
    J.L. Cardy, in “Phase Transitions and Critical Phenomena”, Vol 11, editors C. Domb and J. Lebowitz, Academic Press, London 1986.Google Scholar
  4. [3]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B24l, 333 (1984).MathSciNetADSCrossRefGoogle Scholar
  5. [4]
    A. Cappelli, C. Itzykson and J.B. Zuber, Nucl. Phys. B280, 445 (1987).MathSciNetADSCrossRefGoogle Scholar
  6. [5]
    A. Cappelli, Phys. Lett. BI85, 82 (1987).MathSciNetADSGoogle Scholar
  7. [ 6 ]
    A. Cappelli, C. Itzykson and J.B. Zuber, Saclay preprint 87-59, Comm. Math. Phys. 112 (1987).Google Scholar
  8. [7]
    For a review, see P. Goddard and D. Olive Int. J. Mod. Phys. Al (1986) 303; V.G. Kag, “Infinite Dimensional Lie Algebras” Cambridge Un. Press, London 1985.Google Scholar
  9. [8]
    P. Goddard, A. Kent and D. Olive, Comm. Math. Phys. 103, 105 (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  10. [9]
    D. Friedan, Z. Qiu and S. Shenker, Phys. Rev. Lett. 52, 1575 (1984); in “Vertex Operators in Mathematics and Physics” J. Leposwky, S. Mandelstam and I. Singer eds. Springer, Berlin 1985; Comm. Math. Phys. 107, 535 (1986).Google Scholar
  11. [10a]
    H. Saleur, J. Phys. A20 (1987) 82MathSciNetGoogle Scholar
  12. [10b]
    P. Di Francesco, H. Saleur and J.B. Zuber, Nucl. Phys. B285, 454 (1987)ADSCrossRefGoogle Scholar
  13. [10c]
    J. Stat. Phys. in press.Google Scholar
  14. [11]
    J.L. Cardy, Nucl. Phys. B270, 186 (1986).MathSciNetADSCrossRefGoogle Scholar
  15. [12]
    V.S. Dotsenko and V.A. Fateev, Nucl. Phys. B240 (1984) 312, B251 (1985) 691; Phys. Lett. B154 (1985) 291.Google Scholar
  16. [13]
    C. Itzykson and J.B. Zuber, Nucl. Phys. B275, 580 (1986).MathSciNetADSCrossRefGoogle Scholar
  17. [14]
    A. Rocha-Caridi, in “Vertex operators in mathematics and physics” op. cit.Google Scholar
  18. [15]
    R.C. Gunnings, “Lectures on Modular Forms”, Princeton Un. press, 1962.Google Scholar
  19. [16]
    D. Gepner, Nucl. Phys. B287, 111 (1987).MathSciNetADSCrossRefGoogle Scholar
  20. [17]
    D. Gepner and Z. Qiu, Nucl. Phys. B285, 423 (1987).MathSciNetADSCrossRefGoogle Scholar
  21. [18]
    J.E. Humpreys, Introduction to Lie Algebras and representation theory, Springer, Berlin 1972.CrossRefGoogle Scholar
  22. [19]
    A. Kato, Mod. Phys. Lett. A2, 585 (1987).ADSGoogle Scholar
  23. [20]
    P. Slodowy, in “Algebraic geometry”, J. Dolgachev ed. Lecture Notes in Mathematics 108, Springer Berlin 1983.Google Scholar
  24. [21]
    J. Cardy, private communication.Google Scholar
  25. [22a]
    W. Nahm, private informations. See also the worksGoogle Scholar
  26. [22b]
    P. Bouwknegt and W. Nahm, Phys. Lett. B184, 359 (1987)MathSciNetADSGoogle Scholar
  27. [22c]
    D. Bernard, Ph.D. Thesis, Universite de Paris-Sud (Orsay), January 1987Google Scholar
  28. [22d]
    P. Bouwknegt, Amsterdam preprint ITFA 87/05Google Scholar
  29. [22e]
    P. Bowcock and P. Goddard, Nucl. Phys. B285, 651 (1987).MathSciNetADSCrossRefGoogle Scholar
  30. [23a]
    P. Christe, Ph. D. Thesis, Bonn. Univ. 1986, IR-86-32Google Scholar
  31. [23b]
    P. Christe R. Flume, Phys. Lett. B188 (1987) 219.MathSciNetADSGoogle Scholar
  32. [24a]
    D.A. Huse, Phys. Rev. B30, (1984) 3908.MathSciNetADSGoogle Scholar
  33. [24b]
    A.W.W. Ludwig and J.L. Cardy, Nucl. Phys. B285 (1987) 687.MathSciNetADSCrossRefGoogle Scholar
  34. [25]
    B. Nienhuis, J. Stat. Phys. 34 (1984) 73, J. Phys. A15 (1982) I89.Google Scholar
  35. [26]
    V. Pasquier, Nucl. Phys. B285, 162 (1987), J. Phys. A20, L221, L217 (1987), Saclay preprint 87/014,062.Google Scholar
  36. [27a]
    E. Witten, Comm. Math. Phys. 92, 455 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  37. [27b]
    V.G. Knizhnik and A.B. Zamolodchikov, Nucl. Phys. B247 (1984) 83MathSciNetADSCrossRefGoogle Scholar
  38. [27c]
    D. Gepner and E. Witten, Nucl. Phys. B278 (1986) 493.MathSciNetADSCrossRefGoogle Scholar
  39. [28a]
    D. Friedan, Z. Qiu and S. Shenker, Phys. Lett. 151B, 37 (1985)MathSciNetADSGoogle Scholar
  40. [28b]
    M. Bershadsky, V. Zmizhnik and M. Teitelman, Phys. Lett. 151B, 31 (1985).ADSGoogle Scholar
  41. [29a]
    W. Boucher, D. Friedan and A. Kent, Phys. Lett. 172B, 316 (1986)MathSciNetADSGoogle Scholar
  42. [29b]
    P. Di Vecchia, J.L. Petersen, M. Yu and H.B. Zheng, Phys. Lett. 174b (1986) 280ADSGoogle Scholar
  43. [29c]
    V.G. Kag and I.T. Todorov, Comm. Math. Phys. 102, 337 (1985)MathSciNetADSCrossRefGoogle Scholar
  44. [29d]
    E.B. Kiritsis, Cal. Tech. preprint 68-1390, 1987.Google Scholar
  45. [30]
    V.A. Fateev and A.B. Zamolodchikov, Sov. Phys. JETP 62, 215 (1985).MathSciNetGoogle Scholar
  46. [31a]
    D. Gepner, Princeton preprint March 1987Google Scholar
  47. [31b]
    S.K. Yang and F. Ravanini, Nordita preprint 87/25-P. F. Ravanini, Nordita preprint 87/43-P.Google Scholar
  48. [32a]
    V.A. Fateev and A.B. Zamolodchikov, Nucl. Phys. B280, 644 (1987)MathSciNetADSCrossRefGoogle Scholar
  49. [32b]
    Landau Institute preprint 1986; E. Verlinde et al, Utrecht preprint 1987.Google Scholar
  50. [33a]
    M. Jimbo, T. Miwa and M. Okado, Nucl. Phys. B275 (1986) 517, RIMS preprints 564, 566, 572Google Scholar
  51. [33b]
    H.J. De Vega and M. Karowski, Nucl. Phys. B285, 619 (1987)ADSCrossRefGoogle Scholar
  52. [33c]
    V. Rittenberg, in Paris-Meudon Colloqium; 22-26 September 1986; H. De Vega et al editors.Google Scholar
  53. [34]
    D. Friedan, Z. Qiu and S. Shenker, Physics Today, Jan. 1987 p.S19.Google Scholar
  54. [35a]
    Von Gahlen and V. Rittenberg, J. Phys. A20, 227 (1987); A19, L1039ADSGoogle Scholar
  55. [35b]
    D. Friedan and S. Shenker, Chicago Un. preprint EFI 86-17Google Scholar
  56. [35c]
    S.K. Yang, Nucl. Phys. B285, 639 (1987), 183ADSCrossRefGoogle Scholar
  57. [35d]
    S.K. Yang and H.B. Zeug, Nucl. Phys. B285, 410 (1987)ADSCrossRefGoogle Scholar
  58. [35e]
    H. Saleur, Saclay preprint 87-46, April 1987Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Andrea Cappelli
    • 1
    • 2
  1. 1.Service de Physique Théorique CEN-SaclayGif-sur-Yvette CedexFrance
  2. 2.INFN, Sezione di FirenzeFlorenceItaly

Personalised recommendations