The A-D-E Classification of Conformal Invariant Field Theories in Two Dimensions

  • Andrea Cappelli
Part of the NATO ASI Series book series (NSSB, volume 185)

Abstract

Two dimensional massless quantum field theory invariant under conformal transformations is a well developed and beautiful subject [1,2,3], which finds applications in string theory [1] and critical phenomena in statistical physics [2]. We shall present results obtained at Saclay, in collaboration with C. Itzykson and J.-B. Zuber [4,5, 6 ] and we shall mainly discuss the applications to critical phenomena.

Keywords

Manifold Helium Kato 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1a]
    A.M. Polyakov, Phys. Lett. 103B, 207, 211 (1981)Google Scholar
  2. [1b] D. Friedan, in “Recent Advances in Field theory and Statistical Mechanics”, Les Houches School 1982, J.B. Zuber and R. Stora editors, North Holland 1984.Google Scholar
  3. [2]
    J.L. Cardy, in “Phase Transitions and Critical Phenomena”, Vol 11, editors C. Domb and J. Lebowitz, Academic Press, London 1986.Google Scholar
  4. [3]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B24l, 333 (1984).MathSciNetADSCrossRefGoogle Scholar
  5. [4]
    A. Cappelli, C. Itzykson and J.B. Zuber, Nucl. Phys. B280, 445 (1987).MathSciNetADSCrossRefGoogle Scholar
  6. [5]
    A. Cappelli, Phys. Lett. BI85, 82 (1987).MathSciNetADSGoogle Scholar
  7. [ 6 ]
    A. Cappelli, C. Itzykson and J.B. Zuber, Saclay preprint 87-59, Comm. Math. Phys. 112 (1987).Google Scholar
  8. [7]
    For a review, see P. Goddard and D. Olive Int. J. Mod. Phys. Al (1986) 303; V.G. Kag, “Infinite Dimensional Lie Algebras” Cambridge Un. Press, London 1985.Google Scholar
  9. [8]
    P. Goddard, A. Kent and D. Olive, Comm. Math. Phys. 103, 105 (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  10. [9]
    D. Friedan, Z. Qiu and S. Shenker, Phys. Rev. Lett. 52, 1575 (1984); in “Vertex Operators in Mathematics and Physics” J. Leposwky, S. Mandelstam and I. Singer eds. Springer, Berlin 1985; Comm. Math. Phys. 107, 535 (1986).Google Scholar
  11. [10a]
    H. Saleur, J. Phys. A20 (1987) 82MathSciNetGoogle Scholar
  12. [10b]
    P. Di Francesco, H. Saleur and J.B. Zuber, Nucl. Phys. B285, 454 (1987)ADSCrossRefGoogle Scholar
  13. [10c]
    J. Stat. Phys. in press.Google Scholar
  14. [11]
    J.L. Cardy, Nucl. Phys. B270, 186 (1986).MathSciNetADSCrossRefGoogle Scholar
  15. [12]
    V.S. Dotsenko and V.A. Fateev, Nucl. Phys. B240 (1984) 312, B251 (1985) 691; Phys. Lett. B154 (1985) 291.Google Scholar
  16. [13]
    C. Itzykson and J.B. Zuber, Nucl. Phys. B275, 580 (1986).MathSciNetADSCrossRefGoogle Scholar
  17. [14]
    A. Rocha-Caridi, in “Vertex operators in mathematics and physics” op. cit.Google Scholar
  18. [15]
    R.C. Gunnings, “Lectures on Modular Forms”, Princeton Un. press, 1962.Google Scholar
  19. [16]
    D. Gepner, Nucl. Phys. B287, 111 (1987).MathSciNetADSCrossRefGoogle Scholar
  20. [17]
    D. Gepner and Z. Qiu, Nucl. Phys. B285, 423 (1987).MathSciNetADSCrossRefGoogle Scholar
  21. [18]
    J.E. Humpreys, Introduction to Lie Algebras and representation theory, Springer, Berlin 1972.CrossRefGoogle Scholar
  22. [19]
    A. Kato, Mod. Phys. Lett. A2, 585 (1987).ADSGoogle Scholar
  23. [20]
    P. Slodowy, in “Algebraic geometry”, J. Dolgachev ed. Lecture Notes in Mathematics 108, Springer Berlin 1983.Google Scholar
  24. [21]
    J. Cardy, private communication.Google Scholar
  25. [22a]
    W. Nahm, private informations. See also the worksGoogle Scholar
  26. [22b]
    P. Bouwknegt and W. Nahm, Phys. Lett. B184, 359 (1987)MathSciNetADSGoogle Scholar
  27. [22c]
    D. Bernard, Ph.D. Thesis, Universite de Paris-Sud (Orsay), January 1987Google Scholar
  28. [22d]
    P. Bouwknegt, Amsterdam preprint ITFA 87/05Google Scholar
  29. [22e]
    P. Bowcock and P. Goddard, Nucl. Phys. B285, 651 (1987).MathSciNetADSCrossRefGoogle Scholar
  30. [23a]
    P. Christe, Ph. D. Thesis, Bonn. Univ. 1986, IR-86-32Google Scholar
  31. [23b]
    P. Christe R. Flume, Phys. Lett. B188 (1987) 219.MathSciNetADSGoogle Scholar
  32. [24a]
    D.A. Huse, Phys. Rev. B30, (1984) 3908.MathSciNetADSGoogle Scholar
  33. [24b]
    A.W.W. Ludwig and J.L. Cardy, Nucl. Phys. B285 (1987) 687.MathSciNetADSCrossRefGoogle Scholar
  34. [25]
    B. Nienhuis, J. Stat. Phys. 34 (1984) 73, J. Phys. A15 (1982) I89.Google Scholar
  35. [26]
    V. Pasquier, Nucl. Phys. B285, 162 (1987), J. Phys. A20, L221, L217 (1987), Saclay preprint 87/014,062.Google Scholar
  36. [27a]
    E. Witten, Comm. Math. Phys. 92, 455 (1984)MathSciNetADSMATHCrossRefGoogle Scholar
  37. [27b]
    V.G. Knizhnik and A.B. Zamolodchikov, Nucl. Phys. B247 (1984) 83MathSciNetADSCrossRefGoogle Scholar
  38. [27c]
    D. Gepner and E. Witten, Nucl. Phys. B278 (1986) 493.MathSciNetADSCrossRefGoogle Scholar
  39. [28a]
    D. Friedan, Z. Qiu and S. Shenker, Phys. Lett. 151B, 37 (1985)MathSciNetADSGoogle Scholar
  40. [28b]
    M. Bershadsky, V. Zmizhnik and M. Teitelman, Phys. Lett. 151B, 31 (1985).ADSGoogle Scholar
  41. [29a]
    W. Boucher, D. Friedan and A. Kent, Phys. Lett. 172B, 316 (1986)MathSciNetADSGoogle Scholar
  42. [29b]
    P. Di Vecchia, J.L. Petersen, M. Yu and H.B. Zheng, Phys. Lett. 174b (1986) 280ADSGoogle Scholar
  43. [29c]
    V.G. Kag and I.T. Todorov, Comm. Math. Phys. 102, 337 (1985)MathSciNetADSCrossRefGoogle Scholar
  44. [29d]
    E.B. Kiritsis, Cal. Tech. preprint 68-1390, 1987.Google Scholar
  45. [30]
    V.A. Fateev and A.B. Zamolodchikov, Sov. Phys. JETP 62, 215 (1985).MathSciNetGoogle Scholar
  46. [31a]
    D. Gepner, Princeton preprint March 1987Google Scholar
  47. [31b]
    S.K. Yang and F. Ravanini, Nordita preprint 87/25-P. F. Ravanini, Nordita preprint 87/43-P.Google Scholar
  48. [32a]
    V.A. Fateev and A.B. Zamolodchikov, Nucl. Phys. B280, 644 (1987)MathSciNetADSCrossRefGoogle Scholar
  49. [32b]
    Landau Institute preprint 1986; E. Verlinde et al, Utrecht preprint 1987.Google Scholar
  50. [33a]
    M. Jimbo, T. Miwa and M. Okado, Nucl. Phys. B275 (1986) 517, RIMS preprints 564, 566, 572Google Scholar
  51. [33b]
    H.J. De Vega and M. Karowski, Nucl. Phys. B285, 619 (1987)ADSCrossRefGoogle Scholar
  52. [33c]
    V. Rittenberg, in Paris-Meudon Colloqium; 22-26 September 1986; H. De Vega et al editors.Google Scholar
  53. [34]
    D. Friedan, Z. Qiu and S. Shenker, Physics Today, Jan. 1987 p.S19.Google Scholar
  54. [35a]
    Von Gahlen and V. Rittenberg, J. Phys. A20, 227 (1987); A19, L1039ADSGoogle Scholar
  55. [35b]
    D. Friedan and S. Shenker, Chicago Un. preprint EFI 86-17Google Scholar
  56. [35c]
    S.K. Yang, Nucl. Phys. B285, 639 (1987), 183ADSCrossRefGoogle Scholar
  57. [35d]
    S.K. Yang and H.B. Zeug, Nucl. Phys. B285, 410 (1987)ADSCrossRefGoogle Scholar
  58. [35e]
    H. Saleur, Saclay preprint 87-46, April 1987Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Andrea Cappelli
    • 1
    • 2
  1. 1.Service de Physique Théorique CEN-SaclayGif-sur-Yvette CedexFrance
  2. 2.INFN, Sezione di FirenzeFlorenceItaly

Personalised recommendations