Reaction Kinetics on Fractal and Euclidean Structures with Energetic Disorder: Random Walk Simulations

  • L. W. Anacker
  • R. Kopelman
Part of the Institute for Amorphous Studies Series book series (EPPS)

Abstract

A Monte Carlo approach is used to treat diffusion-limited reaction kinetics in microscopically heterogeneous media with energetic disorder. Simulations performed on the Cyber 205 supercomputer for the elementary reaction A + A → A show that the rate law is well described in terms of the microscopic exploration space of a single random walker, that is, by the number of distinct sites visited, S. This provides a scaling approach for moving from single walker simulations to reacting random walker simu­lations over a broad range of times and reduced temperatures. In the asymptotic limit of long times, single walker simulations for exponential, Gaussian and uniform distributions of energetic disorder on the Sierpinski gasket appear to follow a simple power law, S(t) ∝ tf. Simulations of re­acting random walkers show that the density, ρ, is fairly well described by the relation: p−1 ∝S(t) as t → ∞.

Keywords

Macromolecule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. deGennes, C. R. Acad. Sci. (Paris) Ser. A 296 881 (1983).Google Scholar
  2. 2.
    P. Evesque, J. Phys., 44 1227 (1983).Google Scholar
  3. 3.
    P. Evesque and J. Duran, J. Chem. Phys. 80 3016 (1984).CrossRefGoogle Scholar
  4. 4.
    P. W. Klymko and R. Kopelman, J. Lumin. a) 24/25 457 (1981), b) J. Phys. Chem. 86 3686 (1982), c) 87 4565 (1983).Google Scholar
  5. 5.
    L. W. Anacker, P. W. Klymko, R. Kopelman, J. Lumin 31+32 648 (1984).Google Scholar
  6. 6.
    R. Kopelman, P. W. Klymko, J. S. Newhouse, L. W. Anacker, Phys. Rev. B 29 3747 (1984).CrossRefGoogle Scholar
  7. 7.
    L. W. Anacker and R. Kopelman, J. Chem. Phys. 81 6402 (1984).CrossRefGoogle Scholar
  8. 8.
    L. W. Anacker, R. P. Parson, R. Kopelman, J. Phys. Chem. 89 4758 (1985).CrossRefGoogle Scholar
  9. 9.
    L. W. Anacker, R. Kopelman, J. S. Newhouse, J. Stat. Phys. 36 591 (1984).CrossRefGoogle Scholar
  10. 10.
    K. Kang and S. Redner, Phys. Rev. Lett. 52 955 (1984).CrossRefGoogle Scholar
  11. 11.
    R. Kopelman, J. Hoshen, J. S. Newhouse, P. Argyrakís, J. Stat. Phys. 30 335 (1983).CrossRefGoogle Scholar
  12. 12.
    G. Zumofen, A. Blumen, J. Klafter, J. Chem. Phys. 82 3198 (1985).CrossRefGoogle Scholar
  13. 13.
    P. Meakin and H. E. Stanley, J. Phys. A17 L173 (1984).Google Scholar
  14. 14.
    D. C. Torney and H. M. McConnell, J. Phys. Chem. 87 1441 (1983).CrossRefGoogle Scholar
  15. 15.
    D. C. Torney, J. Chem. Phys. 79 3606 (1983).CrossRefGoogle Scholar
  16. 16.
    P. V. Elyutin, J. Phys. C, 17 1867 (1984)CrossRefGoogle Scholar
  17. 17.
    S. Alexander and R. Orbach, J. Phys. Lett. (Paris) 43 1625 (. 1982 ).Google Scholar
  18. 18.
    R. Rammal and G. Toulouse, J. Phys. Lett. (Paris) 44 L13 (1983).CrossRefGoogle Scholar
  19. 19.
    J. C. Angles d’Auriac, A. Benoit, and R. Rammal, J. Phys. A: Math. Gen. 16 4039 (1983).CrossRefGoogle Scholar
  20. 20.
    R. Rammal, J. Stat. Phys. 36 547 (1984).CrossRefGoogle Scholar
  21. 21.
    R. B. Pandy and D. Stauffer, Phys. Rev. Lett. 51 527 (1983).CrossRefGoogle Scholar
  22. 22.
    P. Argyrakis, L. W. Anacker, R. Kopelman, J. Stat. Phys. 36 561 (1984).CrossRefGoogle Scholar
  23. 23.
    J. Klafter, A. Blumen, G. Zumofen, J. Stat. Phys. 36 639 (1984).CrossRefGoogle Scholar
  24. 24.
    M. F. Shlesinger, J. Stat. Phys. 36 639 (1984).CrossRefGoogle Scholar
  25. 25.
    J. T. Bendler and M. Shlesinger, Macromolecules 18 591 (1984).CrossRefGoogle Scholar
  26. 26.
    E. W. Montroll and G. H. Weiss, J Math. Phys. 6 167 (1965).CrossRefGoogle Scholar
  27. 27.
    H. Scher and E. W. Montroll, Phys. Rev. B 12 2455 (1975).CrossRefGoogle Scholar
  28. 28.
    H. Scher and M. Lax, Phys. Rev. B 7 4491, 4502 (1973).CrossRefGoogle Scholar
  29. 29.
    J. Klafter and R. Silbey, Phys. Rev. Lett. 44 55 (1980).CrossRefGoogle Scholar
  30. 30.
    G. Schönherr, H. Bässler, and M. Silver, Phil. Mag. B, 44 47 (1981).CrossRefGoogle Scholar
  31. 31.
    P. B. Allen, J. Phys. C 13 L667 (1980).CrossRefGoogle Scholar
  32. 32.
    S. Alexander, J. Bernasconi, R. W. Schneider, R. Orbach, Rev. Mod. Phys. 53 175 (1981).CrossRefGoogle Scholar
  33. 33.
    T. E. Orlowski and H. Scher, Phys. Rev. Lett. 54 220 (1985).CrossRefGoogle Scholar
  34. 34.
    J. M. Marshall and A. C. Sharp, J. Non-Crys. Solids 35/36 99 (1980).Google Scholar
  35. 35.
    M. Silver, E. Snow, D. Adler, Solid State Communications 53 637 (1985).CrossRefGoogle Scholar
  36. 36.
    V. M. Smoluchowski, Z. Physik. Chem. 92 129 (1917).Google Scholar
  37. 37.
    S. Chandrasekhar, Rev. Mod. Phys. 15 1 (1943).CrossRefGoogle Scholar
  38. 38.
    P. Argyrakis and R. Kopelman, J. Chem. Phys. 72 3053 (1980).CrossRefGoogle Scholar
  39. 39.
    H. B. Rosenstock, Phys. Rev. 187 1166 (1969), SIAM J. Appl. Math. 27 457 (1957).CrossRefGoogle Scholar
  40. 40.
    R. P. Parson and R. Kopelman, Chem. Phys. Lett. 104 320 (1984).CrossRefGoogle Scholar
  41. 41.
    B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Fr man, San Francisco, 1983 ).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • L. W. Anacker
    • 1
  • R. Kopelman
    • 1
  1. 1.Department of ChemistryThe University of MichiganAnn ArborUSA

Personalised recommendations