Skip to main content

Ferroelectric Polymer Transducers for High Resolution Scanning Acoustic Microscopy

  • Chapter

Part of the book series: Acoustical Imaging ((ACIM,volume 16))

Abstract

Acoustic microscopy have increasingly become of use for visualization of microstructure and for characterization of acoustic properties of materials1,2). Since scanning acoustic microscope (SAM) was first introduced by Lemons and Quate3), almost all SAM images and V(z) curves have been obtained by using Quate type transducers. This transducer comprises a planar transducer deposited or bonded on the rear surface of a sapphire buffer rod whose front surface is shaped into a concave sphere (acoustic lens) to transmit a focusing acoustic beam in coupling liquid, e.g., water.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Lemons and C. F. Quate, Acoustic Microscopy, in: “Physical Acoustics” vol.14, Eds. W. P. Mason and R. N. Thurston, pp. 1–92, Academic Press, London. (1979).

    Google Scholar 

  2. A. Briggs, “An introduction to Scanning Acoustic Microscopy”, Oxford University Press, Oxford (1985). For review of recent developments, see papers in the special issue on acoustic microscopy, IEEE Trans. Sonics Ultrason. SU-32, [2] (1985).

    Google Scholar 

  3. R. A. Lemons and C. F. Quate, Acoustic microscope-scanning version, Appl. Phys. Lett. 24: 163 (1974).

    Article  ADS  Google Scholar 

  4. K. Kimura and H. Ohigashi, Generation of very high-frequency ultrasonic waves using thin films of vinylidene fluoride-trifluoroethylene copolymer, J. Appl. Phys. 61: 4749 (1987).

    Article  ADS  Google Scholar 

  5. K. Kimura and H. Ohigashi, Ferroelectric properties of poly(vinylidene- f luoride-trif luoroethylene) copolymer thin films, Appl. Phys. Lett., 43: 834 (1983).

    Google Scholar 

  6. N. Chubachi and T. Sannomiya, Confocal pair of concave transducers made of PVF2 piezoelectric films, Jpn, J. Appl. Phys. 16: 2259 (1977).

    Article  Google Scholar 

  7. N. Chubachi and T. Sannomiya, Composite resonator using PVF2 film and its application: concave transducer for focusing radiation of VHF ultrasonic waves, 1977 IEEE Ultrasonic Symposium Proceedings, p. 119 (1977).

    Google Scholar 

  8. A. Labreche, A. Beausejour, M. Castonguay, and J. D. N. Cheecke, Scanning acoustic microscopy using PVDF concave lenses, Electron Lett. 21: 990 (1985).

    Article  Google Scholar 

  9. K. Koga and H. Ohigashi, Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers, J. Appl. Phys. 56: 2142 (1986).

    Article  ADS  Google Scholar 

  10. H. Ohigashi, K. Koga, M. Suzuki, T. Nakanishi, K. Kimura, and N. Hashimoto, Piezoelectric and ferroelectric properties of P(VDF-TrFE) copolymers and their application to ultrasonic transducers, Ferroelectrics, 60: 263 (1984).

    Article  Google Scholar 

  11. K. Kimura, N. Hashimoto, and H. Ohigashi, Performance of a linear array transducer of vinylidene fluoride and trifluoroethylene copolymer, IEEE Trans. Sonics Ultrason. SU-32: 566 (1985).

    Google Scholar 

  12. K. Sakaguchi, T. Sato, K. Koyama, S. Yamamizu, S. Ikeda, and Y. Wada, Wide-band multi-layer ultrasonic transducers made of piezoelectric films of vinylidene fluoride-trifluoroethylene copolymer, Jpn. J. Appl. Phys., 25, Suppl. 25–1: 91 (1985).

    Google Scholar 

  13. T. Sato, K. Koyama, S. Ikeda, and Y. Wada, Short pulse response of ultrasonic transducers made of piezoelectric copolymer films of vinylidene fluoride-trifluoroethylene, Jpn. J. Appl. Phys. 26, Suppl. 26–1: 180 (1987).

    Google Scholar 

  14. S. Tsuchiya, T. Sato, K. Koyama, S. Ikeda, and Y. Wada, Application of piezoelectric film of vinylidene fluoride-trifluoroethylene copolymer to highly sensitive miniature hydrophone, Jpn. J. Appl. Phys. 26, Suppl. 26–1: 183 (1987).

    Google Scholar 

  15. H. Ohigashi, K. Koyama, S. Takahashi, K. Kimura, Y. Maida, and Y. Wada, High-resolution scanning acoustic microscope using a thin film transducer of P(VDF-TrFE), in: “Ultrasonic Technology 1987” (Proceedings of the Toyohashi International Conference on Ultrasonic Technology), Ed. K Toda,l p.63, Myu, Tokyo (1987).

    Google Scholar 

  16. K. Koga and H. Ohigashi, unpublished.

    Google Scholar 

  17. K. Kimura and H. Ohigashi, Polarization behavior in vinylidene fluoride-trifluoroethylene copolymer thin films, Jpn. J. Appl. Phys., 25:383 (1986).

    Article  ADS  Google Scholar 

  18. D. J. Li, G. L. Chen, and K. Q. Zhang, A new transducer-focusing system for acoustic microscope—glass—metal based concave spherical transducer, 1984 IEEE Ultrasonics Symposium Proeedings, p. 567 (1984).

    Google Scholar 

  19. J. S. Foster and D. Rugar, Low-temperature acoustic microscopy, IEEE Trans. Sonics Ultrason. SU-32: 139 (1985).

    Google Scholar 

  20. J. Kushibuki and N. Chubachi, Material characterization by line-focus- beam acoustic microscope, IEEE Trans. Sonics Ultrason. SU-32: 189 (1985).

    Google Scholar 

  21. K. Yamanaka, Y. Enomoto, and Y. Tsuya, Acoustic microscopy of ceramic surfaces, IEEE Trans. Sonics Ultrason. SU-32: 331 (1985).

    Google Scholar 

  22. D. A. Sinclair, I. R. Smith, and S. D. Bennett, Elastic constants measurement with a digital acoustic microscope, IEEE Trans. Sonics Ultrason. 31: 271 (1984).

    Google Scholar 

  23. C. F. Quate, A. Atalar, and H. K. Wickramashinghe, Phase imaging in reflection with the acoustic microscope, Appl. Phys. Lett. 31: 791 (1977).

    Google Scholar 

  24. W. Parmond and H. L. Bertoni, Ray interpretation of the material signature in the acoustic microscope, Electron. Lett. 15: 684 (1979).

    Google Scholar 

  25. A. Atalar, A physical model for acoustic signatures, J. Appl. Phys., 50: 8237 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Ohigashi, H. et al. (1988). Ferroelectric Polymer Transducers for High Resolution Scanning Acoustic Microscopy. In: Kessler, L.W. (eds) Acoustical Imaging. Acoustical Imaging, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0725-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0725-9_48

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8051-4

  • Online ISBN: 978-1-4613-0725-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics