Skip to main content

Role of Natural Killer Cells in Inflammation and Antibacterial Activity

  • Chapter
Book cover Functions of the Natural Immune System
  • 55 Accesses

Abstract

The purpose of this chapter is to review the evidence that large granular lymphocytes (LGL) can participate in the inflammatory response, with particular reference to bacterial infections. In this discussion, LGL will refer only to those cells that are identifiably of the natural killer (NK) cell lineage with respect to their membrane phenotype, in contrast to those LGL that may be derived from the T cell lineage. In this way, we will be referring to a natural effector population which has historically been associated with a nonrestricted lytic function and acts independently of the T cell receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scala, G., Allavena, P., Djeu, J. Y., Kasahara, T., Ortaldo, J. R., Herberman, R. B., and Oppenheim, J. J., 1984, Human large granular lymphocytes are potent producers of interleukin-1, Nature 309:56–59.

    PubMed  CAS  Google Scholar 

  2. Bottazzi, B., Introna, M., Allavena, P., Villa, A., and Mantovani, A., 1985, In vitro migration of human large granular lymphocytes, J. Immunol. 134:2316–2321.

    PubMed  CAS  Google Scholar 

  3. Pohajdak, B., Gomez, J., Orr, F. W., Khalil, N., and Greenberg, A. H., 1986, Chemotaxis of large granular lymphocytes, J. Immunol. 136:278– 284.

    PubMed  CAS  Google Scholar 

  4. Abo, T., Sugawara, S., Amenomori, A., Itoh, H., Rikiishi, H., Moro, I., Kumagai, K., 1986, Selective phagocytosis of gram-positive bacteria and interleukin-1-like factor production by a subpopulation of large granular lymphocytes, J. Immunol. 136:3189– 3197.

    PubMed  CAS  Google Scholar 

  5. Ward, P. A., Lepow, I. H., and Newman, L. J., 1968, Bacterial factors chemotactic for polymorphonuclear leukocytes, Am. J. Pathol. 52:725– 732.

    PubMed  CAS  Google Scholar 

  6. Snyderman, R., Phillips, J., and Mergenhagen, S. E., 1970, Polymorphonuclear leukocyte chemotactic activity in rabbit serum and guinea pig serum treated with immune complexes: Evidence for C5a as the major chemotactic factor, Infect. Immun. 1:521– 527.

    PubMed  CAS  Google Scholar 

  7. Goldman, D. W., and Goetzl, E. J., 1984, Heterogeneity of human polymorphonuclear leukocyte receptors for leukotriene B4, J. Exp. Med. 159:1027– 1032.

    PubMed  CAS  Google Scholar 

  8. Luger, T. A., Charon, J. A., Colot, M., Micksche, M., and Oppenheim, J. J., 1983, Chemotactic properties of partially purified human epidermal cell-derived thymocyte activating factors (ETAF) for polymorphonuclear luekocytes and mononuclear cells, J. Immunol 131:816– 820.

    PubMed  CAS  Google Scholar 

  9. Sauder, D. N., Marinessa, N. C., Katz, S. I., Dinarello, C. A., and Gallin, J. I., 1984, Chemotactic cytokines: The role of leukocyte pyrogen and epidermal cell thymocyte activating factor in neutrophil chemotaxis, J. Immunol. 132:828– 832.

    PubMed  CAS  Google Scholar 

  10. Ming, W. J., Bersoni, L., and Mantovani, A., 1987, Tumor necrosis factor is chemotactic for monocytes and polymorphonuclear leukocytes, J. Immunol. 138:1469– 1474.

    PubMed  CAS  Google Scholar 

  11. Snyderman, R., and Goetzl, E. J., 1981, Molecular and cellular mechanisms of leukocyte chemotaxis, Science 213:830–837.

    PubMed  CAS  Google Scholar 

  12. Snyderman, R., and Pike, M. C., 1984, Chemoattractant receptors on phagocytic cells, Annu. Rev. Immunol. 2:257– 271.

    PubMed  CAS  Google Scholar 

  13. Russel, R. J., Wilkinson, P. C., Sless, F., and Parrott, D. M. V., 1975, Chemotaxis of lymphoblasts, Nature 256:646–648.

    Google Scholar 

  14. Schreiner, G. F., and Unanue, E. R., 1975, Anti-Ig triggered movements of lymphocytes. Specificity and lack of evidence for directional migration, J. Immunol. 114:809– 814.

    PubMed  CAS  Google Scholar 

  15. Parrott, D. M. V., and Wilkinson, P. C., 1981, Lymphocyte locomotion and migration, Prog. Allergy 28:193.

    PubMed  CAS  Google Scholar 

  16. Center, D. M., and Cruikshank, W., 1982, Modulation of lymphocyte migration by human lymphokines. I. Identification and characterization of chemoattractant activity for lymphocytes from mitogen-stimulated mononuclear cells, J. Immunol. 128:2563–2574.

    PubMed  CAS  Google Scholar 

  17. Kornfeld, H., Berman, J. C., Beer, D. J., Center, D. M., 1985, Induction of human T lymphocytes motility by interleukin-2, J. Immunol. 134:3887–3890.

    PubMed  CAS  Google Scholar 

  18. Hunninghake, G. W., Glazier, A. J., Monick, M. M., and Dinarello, C. A., 1987, Inter- leukin-1 is a chemotactic factor for human T-lymphocytes, Am. Rev. Respir. Dis. 135:66–71.

    PubMed  CAS  Google Scholar 

  19. Wilkinson, P. C., Parrott, M. V., Russel, R. J., and Sless, F., 1977, Antigen-induced locomotor responses in lymphocytes, J. Exp. Med. 145:1158– 1168.

    PubMed  CAS  Google Scholar 

  20. Muse, K. E., and Koren, H. S., 1982, The uropod as an integral and specialized structure of large granular lymphocytes, in: NK and Other Natural Effector Cells (R. B. Herberman, ed.), Academic Press, New York, pp. 1035–1040.

    Google Scholar 

  21. Uchida, A., Colot, M., and Micksche, M., 1984, Suppression of natural killer cell activity by adherent effusion cells of cancer patients. Suppression of motility, binding capacity and lethal hit of NK cells, Br. J. Cancer 49:17– 23.

    PubMed  CAS  Google Scholar 

  22. O’Neill, G. J., and Parrott, D. M. V., 1977, Locomotion of human lymphoid cells. I. Effect of culture and ConA and T and non-T lymphocytes, Cell. Immunol. 33:257– 266.

    PubMed  Google Scholar 

  23. Zigmond, S. H., and Hirsch, J. G., 1973, Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell derived chemotactic factor, J. Exp. Med. 137:387– 410.

    PubMed  CAS  Google Scholar 

  24. Polentarutti, N., Bottazzi, B., Balotta, C., Erroi, A., and Mantovani, A., 1986, Modulation of the locomotor capacity of human large granular lymphocytes, Cell. Immunol. 101:204– 212.

    PubMed  CAS  Google Scholar 

  25. Mclntyre, K. W., and Welsh, R. M., 1986, Accumulation of natural killer and cytotoxic T large granular lymphocytes in the liver during virus infection, J. Exp. Med. 164:1667– 1681.

    Google Scholar 

  26. Stein-Streilein, J., Bennett, M., Mann, D., and Kumar, V., 1983, Natural killer cells in mouse lung, surface phenotype, and response to local influenza virus infection, J. Immunol. 131:2699– 2704.

    PubMed  CAS  Google Scholar 

  27. Wiltrout, R. H., Mathieson, B. J., Talmadge, J. E., Reynolds, C. W., Zhang, S. R., Herberman, R. B., and Ortaldo, J. R., 1982, Augmentation of organ-associated NK activity by biological response modifiers: Isolation and characterization of large granular lymphocytes from the liver, J. Exp. Med. 160:1431– 1449.

    Google Scholar 

  28. Sklar, L. A., and Finnay, D. A., 1982, Analysis of ligand-receptor interactions with the fluorescence activated cell sorter, Cytometry 3:161–167.

    PubMed  CAS  Google Scholar 

  29. Reynolds, C. W., Bere, E. W., and Ward, J. M., 1984, Natural killer activity in the rat. III. Characterization of transplantable large granular lymphocyte (LGL) leukemias in F344 rat, J. Immunol. 132:534– 540.

    PubMed  CAS  Google Scholar 

  30. Haller, O., and Wigzell, H., 1977, Suppression of natural killer cell activity with radioactive strontium: Effector cells are marrow dependent, J. Immunol. 118:1503– 1506.

    PubMed  CAS  Google Scholar 

  31. Lamm, M. E., 1976, Cellular aspects of immunoglobulin A, Adv. Immunol. 22:223– 290.

    PubMed  CAS  Google Scholar 

  32. Kraal, G., Weissman, I. L., and Butcher, E. C., 1982, Germal center B cells: Antigen specificity and changes in heavy chain isotype expression, Nature 298:377–379.

    PubMed  CAS  Google Scholar 

  33. Sprent, J., 1980, Antigen-induced selective sequestration of T lymphocytes: Role of the major histocompatibility complex, Monogr. Allergy 16:233– 244.

    PubMed  CAS  Google Scholar 

  34. Gowans, J. L., and Knight, E. J., 1964, The route of recirculation of lymphocytes in the rat, Proc. R. Soc. Ser. B 159:257– 264.

    CAS  Google Scholar 

  35. Butcher, E. C., 1988, The regulation of lymphocyte traffic, Curr. Top. Microbiol. Immunol. (in press)

    Google Scholar 

  36. Reynolds, C. W., and Ward, J. M., 1986, Tissue and organ distribution of NK cells, in: (E. Lotzova and R. B. Herberman eds.), Immunobiology of Natural Killer Cells, CRC Press, Boca Raton, FL, pp. 63–72.

    Google Scholar 

  37. Timonen, T., Reynolds, C. W., Ortaldo, J. R., and Herberman, R. B., 1982, Isolation of human and rat natural killer cells, J. Immunol. Methods 51:269– 277.

    PubMed  CAS  Google Scholar 

  38. Fox, R. I., Fong, S., Tsoukas, S., and Vaughn, J. H., 1984, Characterization of recirculating lymphocytes in rheumatoid arthritis patients: Selective deficiency of natural killer cells in thoracic duct lymph, J. Immunol. 132:2883– 2887.

    PubMed  CAS  Google Scholar 

  39. Kunagai, K., Itoh, K., Suzuki, R., Hinuma, S., and Saitoh, F., 1982, Studies of murine large granular lymphocytes. I. Identification as effector cells in NK and K cytotoxicities, J. Immunol. 129:388– 394.

    Google Scholar 

  40. Itoh, K., Suzuki, R., Umezu, Y., Hanaumi, K., and Kumagai, K., 1982, Studies of murine large granular lymphocytes. II. Tissue, strain and age distribution of LGL and LAL, J. Immunol. 129:395– 400.

    PubMed  CAS  Google Scholar 

  41. Ward, J. M., Argilan, F., and Reynolds, C. W., 1983, Immunoperoxidase localization of large granular lymphocytes in normal tissues and lesions of thymic nude rats, J. Immunol. 131:132– 139.

    PubMed  CAS  Google Scholar 

  42. Zoller, M., Andrighetto, G., and Heyman, B., 1982, Natural and antibody-dependent killer cells in the thymus, Eur. J. Immunol. 12:914– 921.

    PubMed  CAS  Google Scholar 

  43. Kaneda, K., Dan, C., and Wake, K., 1983, Pit cells as natural killer cells, Biomed. Res. 4:567– 576.

    Google Scholar 

  44. Lukomska, B., Olzewski, W. L., and Engeset, A., 1983, Rat liver contains a distinct blood-borne population of NK cells resistant to anti-asialo GM1 antiserum, Immunol. Lett. 6:277– 281.

    PubMed  CAS  Google Scholar 

  45. Tagliabue, A., Befus, A. D., Clark, D. A., and Bienenstock, J., 1982, Characteristics of natural killer cells in the murine intestinal epithelium and lamina propria, J. Exp. Med. 155:1785– 1796.

    PubMed  CAS  Google Scholar 

  46. Leventon, G. S., Kulkarni, S. S., Meistrich, M. L., Newland, J. R., and Zanden, A. R., 1983, Isolation of murine small bowel intraepithelial lymphocytes, J. Immunol. Methods 63:35– 44.

    PubMed  CAS  Google Scholar 

  47. Rolstad, B., Herberman, R. B., and Reynolds, C. W., 1986, Natural killer cell activity in the rat. V. The circulation patterns and tissue localization of peripheral blood large granular lymphocytes (LGL), J. Immunol. 136:2800– 2808.

    PubMed  CAS  Google Scholar 

  48. Villa, C. B. F., Vecchi, A., Giavazzi, R., Introna, M., Avallone, R., and Mantovani, A., 1982, Natural cytotoxic activity in human lungs, Clin. Exp. Immunol. 47:437– 444.

    PubMed  Google Scholar 

  49. Robinson, B. W. S., Pinkston, P., and Crystal, R. G., 1984, Natural killer cells are present in normal human lung but are functionally impotent, J. Clin. Invest. 74:942– 950.

    PubMed  CAS  Google Scholar 

  50. Bordignon, C., Villa, F., Allavena, P., Intrana, M., Biondi, A., Avallone, R., and Mantovani, A., 1982, Inhibition of natural killer activity by human bronchial alveolar macrophages, J. Immunol. 129:587– 591.

    PubMed  CAS  Google Scholar 

  51. Mann, D. W., Sonnenfeld, G., and Stein-Streilein, J., 1983, Pulmonary compartmen- talization of interferon and natural killer cell activity, Proc. Soc. Exp. Biol. Med. 180:224– 230.

    Google Scholar 

  52. Bukowski, J. F., Woda, B. A., Habu, S., Okumura, K., and Welsh, R. M., 1983, Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo, J. Immunol. 131:1531– 1538.

    PubMed  CAS  Google Scholar 

  53. Bukowski, J. F., Biron, C. A., and Welsh, R. M., 1983, Elevated natural killer cell- mediated cytotoxicity, plasma interferon and tumor cells rejection in mice persistently infected with lymphocytic choriomeningitis, J. Immunol. 131:991– 996.

    PubMed  CAS  Google Scholar 

  54. Biron, C. A., and Welsh, R. M., 1982, Proliferation and role of natural killer cells during viral infection, in: NK Cells and Other Natural Effector Cells ( R. B. Herberman, ed.), Academic Press, New York, p. 493.

    Google Scholar 

  55. Welsh, R. M., 1978, Cytotoxic cells induced during lymphocyte choriomeningitis virus infection in mice. I. Characterization of natural killer cell induction, J. Exp. Med. 148:163– 181.

    PubMed  Google Scholar 

  56. Stein-Streilein, J., Witte, P. L., Streilein, J. W., and Guffee, J., 1985, Local cellular defenses in influenza-infected lungs, Cell. Immunol. 95:234– 246.

    PubMed  CAS  Google Scholar 

  57. Niederkorn, J. Y., Brieland, J. K., and Mayhew, E., 1983, Enhanced natural killer cell activity in experimental murine encephalitozoonosis, Infect. Immun. 41:302– 307.

    PubMed  CAS  Google Scholar 

  58. Tarkkanen, J., Saksela, E., and Lanier, L. L., 1986, Bacterial activation of human natural killer cells. Characteristics of the activation process and identification of the effector cells, J. Immunol. 137:2418– 2433.

    Google Scholar 

  59. Wiltrout, R. H., Denn, A. C., and Reynolds, C. W., 1986, Augmentation of organ-associated NK activity by BRM’s: Association of NK activity with mononuclear cell infiltration, Pathol. Immunopathol. Res. 5:219– 233.

    PubMed  CAS  Google Scholar 

  60. Wiltrout, R. H., Herberman, R. B., Zhang, S. K., Chirigos, M. A., Ortaldo, J. R., Green, K. M. Jr., and Talmadge, J. E., 1985, Role of organ-associated NK cells in decreased formation of experimental metastases in lung and liver, J. Immunol. 134:4267– 4275.

    PubMed  CAS  Google Scholar 

  61. Talmadge, J. E., Schneider, M., Collins, M., Phillips, H., Herberman, R. B., Wiltrout, R. H., 1985, Augmentation of NK cell activity in tissue specific sites by liposomes incorporating MTP-PE, J. Immunol. 135:1477– 1485.

    PubMed  CAS  Google Scholar 

  62. Wiltrout, R. H., Talmadge, J. E., Herberman, R. B., 1988, Biological response modifiers in augmentation of natural killer activity: Potential role in prevention and treatment of metastic disease, Adv. Immun. Cancer Ther. (in press).

    Google Scholar 

  63. Doherty, P. C., and Korngold, R., 1983, Characteristics of poxvirus-induced meningitis: Virus-specific and non-specific cytotoxic effectors in the inflammatory exudate, Scand. J. Immunol 18:107– 114.

    Google Scholar 

  64. Griffin, D. E., and Hess, J. L., 1986, Cells with natural killer activity in the cerebrospinal fluid of normal mice and athymic nude mice with acute sinbus virus encephalitis, J. Immunol. 136:1841– 1845.

    PubMed  CAS  Google Scholar 

  65. Biron, C. A., Turgiss, L. R., and Welsh, R. M., 1983, Increase in NK cell number and turnover rate during acute viral infection, J. Immunol. 131:1539– 1545.

    PubMed  CAS  Google Scholar 

  66. Natuk, R. J., and Welsh, R. M., 1987, Accumulation and chemotaxis of natural killer/ large granular lymphocytes at sites of virus replication, J. Immunol. 138:877– 883.

    PubMed  CAS  Google Scholar 

  67. Phillips, J. H., and Lanier, L. L., 1986, Dissection of the lymphokine activated killer phenomena: Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis, J. Exp. Med. 164:814– 825.

    PubMed  CAS  Google Scholar 

  68. Ettinghausen, S. E., Lipford, E. H., Mule, J. J., and Rosenberg, S. A., 1985, Recombinant interleukin 2 stimulates in vivo proliferation of adoptively transferred lymphokine-activated killer (LAK) cells, J. Immunol. 135:3623– 3635.

    PubMed  CAS  Google Scholar 

  69. Ettinghausen, S. E., Lipford, E. H., Mule, J. J., and Rosenberg, S. A., 1985, Systemic administration of recombinant interleukin 2 stimulates in vivo lymphoid proliferation in tissues, J. Immunol. 135:4488– 4497.

    Google Scholar 

  70. Henney, C. S., Kuribayashi, K., Kern, D. E., and Gillis, S., 1981, Interleukin-2 augments natural killer cell activity, Nature 291:335–337.

    PubMed  CAS  Google Scholar 

  71. Grimm, E. A. A., Mazumider, A., Zhang, H. Z., and Rosenberg, S. A., 1982, Lymphokine-activated killer phenomenon. Lysis of natural-killer resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes, J. Exp. Med. 155:1823– 1841.

    PubMed  CAS  Google Scholar 

  72. Mule, J. J., Shu, S., Schwartz, S. L., and Rosenberg, S. A., 1984, Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2, Science 255:1487–1489.

    Google Scholar 

  73. Lafreniere, R., and Rosenberg, S. A., 1985, Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2, Cancer Res. 45:3735–3741.

    PubMed  CAS  Google Scholar 

  74. Carroll, A. M., Palladino, M. A., Oettgen, H., and De Sousa, M., 1983, In vivo localization of cloned IL-2-dependent T cells, Cell. Immunol. 76:69– 76.

    PubMed  CAS  Google Scholar 

  75. Djeu, J. Y., Stocks, N., Zoon, K., Stanton, G. J., Timonen, T., and Herberman, R. B., 1982, Positive self-regulation of cytotoxicity in human natural killer cells by production of interferon upon exposure to influenza and herpes virus, J. Exp. Med. 156:1222– 1234.

    PubMed  CAS  Google Scholar 

  76. Timonen, T., Saksela, E., Virtanen, I., and Cantell, K., 1980, Natural killer cells are responsible for interferon-induced in human lymphocytes by tumor cell contact, Eur. J. Immunol. 10:422– 427.

    Google Scholar 

  77. Handa, K., Suzuki, R., Matsui, H., Shimizu, Y., and Kumagai, K., 1983, Natural killer (NK) cells as a responder to interleukin 2 (IL2). II. IL2-induced interferon-γ production, J. Immunol. 130:988– 992.

    PubMed  CAS  Google Scholar 

  78. Munakata, K., Semba, U., Shibuya, Y., Kuwano, K., Akagi, M., and Arai, S., 1985, Induction of interferon-γ by human natural killer cells stimulated by hydrogen peroxide, J. Immunol. 134:2449– 2455.

    PubMed  CAS  Google Scholar 

  79. Sauder, D., Mounessa, N. L., Katz, S. I., Dinarello, C. A., and Gallin, J. I., 1984, Chemotactic cytokines: The role of leukocytic pyrogen and epidermal cell thymocyte-activating factor in neutrophil chemotaxis, J. Immunol. 132:828– 832.

    PubMed  CAS  Google Scholar 

  80. Miossec, P., Yu, C.-L., and Ziff, M., 1984, Lymphocyte chemotactic activity of human interleukin-1, J. Immunol. 133:2007– 2011.

    PubMed  CAS  Google Scholar 

  81. Degliantoni, G., Murphy, M., Kobayashi, M., Francis, M. K., Perussia, B., and Trincheri, G., 1985, Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon, J. Exp. Med. 162:1512– 1530.

    PubMed  CAS  Google Scholar 

  82. Ming, W. J., Bersani, L., and Mantovani, A., 1987, Tumor necrosis factor is chemotactic for monocytes and polymorphonuclear leukocytes, J. Immunol. 138:1469– 1474.

    PubMed  CAS  Google Scholar 

  83. Kasahara, T., Djeu, J. Y., Dougherty, S. F., and Oppenheim, J. J., 1983, Capacity of human large granular lymphocytes (LGL) to produce multiple lymphokines: Interleukin 2, interferon and colony-stimulating factor, J. Immunol. 131:2379– 2384.

    PubMed  CAS  Google Scholar 

  84. Procopio, A. D. G., Allavena, P., and Ortaldo, J. R., 1985, Noncytotoxic functions of natural killer (NK) cells: Large granular lymphocytes (LGL) produce a B cell growth factor (BCGF), J. Immunol. 135:3264– 3271.

    PubMed  CAS  Google Scholar 

  85. Greenberg, A. H., Khalil, N., Pohajdak, B., Talgoy, M., Henkart, P., and Orr, F. W., 1986, NK-leukocyte chemotactic factor (NK-LCF). A large granular lymphocyte (LGL) granule-associated chemotactic factor, J. Immunol. 137:3224– 3230.

    PubMed  CAS  Google Scholar 

  86. Henkart, P. A., Millard, P. J., Reynolds, C. W., and Henkart, M. P., 1984, Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors, J. Exp. Med. 160:75– 93.

    PubMed  CAS  Google Scholar 

  87. Henkart, P. A. (personal communication).

    Google Scholar 

  88. MacDermott, R. P., Schmidt, R. E., Caulfield, J. P., Hein, A., Bartley, G. T., Ritz, J., Schlossman, S. F., Austen, K. F., and Stevens, R. L., 1985, Proteoglycans in cell mediated cytotoxicity. Identification, localization and exocytosis of a chondroitin sulfate proteoglycan from human cloned natural killer cells during target cell lysis, J. Exp. Med. 162:1771– 1787.

    PubMed  CAS  Google Scholar 

  89. Nencioni, K., Villa, L., Boraschi, D., Berti, B., and Taglibue, A., 1983, Natural and antibody-dependent cell-mediated activity against Salmonella typhimurium by peripheral and intestinal lymphoid cells in mice, J. Immunol. 130:903– 907.

    PubMed  CAS  Google Scholar 

  90. Lowell, G. H., Smith, L. F., Griffiss, J. M., and Brandt, B. L., 1980, IgA-dependent, monocyte-mediated antibacterial activity, J. Exp. Med. 152:452– 457.

    PubMed  CAS  Google Scholar 

  91. Lowell, G. H., Smith, L. F., Artenstein, M. S., Nash, G. S., and MacDermott, R. P., 1979, Antibody-dependent cell-mediated antibacterial activity of human mononuclear cell. I. K-lymphocytes and monocytes are effective against meningococci in cooperation with human immune sera, J. Exp. Med. 150:127– 137.

    PubMed  CAS  Google Scholar 

  92. Lowell, G. H., MacDermott, R. P., Summers, P. L., Reeder, A. A., Bertovich, M. J., and Formal, S. B., 1980, Antibody-dependent cell-mediated antibacterial activity: K lymphocytes, monocytes and granulocytes are effective against Shigella, J. Immunol. 125:2778– 2784.

    PubMed  CAS  Google Scholar 

  93. Morgan, D. H., DuPont, H. L., Gonik, B., and Kohl, S., 1984, Cytotoxicity of human peripheral blood and colostral leukocytes against Shigella species, Infect. Immun. 46:25– 33.

    PubMed  CAS  Google Scholar 

  94. Morgan, D. R., DuPont, H. L., Wood, L. V., and Kohl, S., 1984, Cytotoxicity of leukocytes from normal and Shigella-susceptible (opium-treated) guinea pigs against virulent Shigella sonnei, Infect. Immun. 46:22– 24.

    PubMed  CAS  Google Scholar 

  95. Tagliabue, A., Nencioni, L., Villa, L., Keren, D. F., Lowell, G. H., and Boraschi, D., 1983, Antibody-dependent cell-mediated antibacterial activity of intestinal lymphocytes with secretory IgA, Nature 300:184–186.

    Google Scholar 

  96. Tagliabue, A., Nencioni, L., Villa, L., and Boraschi, D., 1984, Genetic control of in vitro natural cell-mediated activity against Salmonella typhimurium by intestinal and splenic lymphoid cells in mice, Clin. Exp. Immunol. 56:531– 536.

    PubMed  CAS  Google Scholar 

  97. Klimpel, G., Niesel, D. W., and Klimpel, K. D., 1986, Natural cytotoxic effector cell activity against Shigella flexneri-infected HeLa cells, J. Immunol. 136:1081–1086.

    PubMed  CAS  Google Scholar 

  98. Peters, P. M., Ortaldo, J: R., Shalaby, M. R., Svedersky, L. P., Nedwin, G. E., Bring- man, T. S., Hass, P. E., Aggarwal, B. B., Herberman, R. B., Goedel, D. V., and Palladino, M. A. Jr., 1986, Natural killer cell-sensitive targets stimulate production of TNF α but not TNF ß (lymphotoxin) by highly purified human peripheral blood large granular lymphocytes, J. Immunol. 137:2592–2598.

    PubMed  CAS  Google Scholar 

  99. Wright, S. C., and Bonavida, B., 1983, YAC-1 variant clones selected for resistance to natural killer cytotoxic factors are also resistant to natural killer cell-mediated cytotoxicity, Proc. Natl. Acad. Sci. USA 80:1688–1692.

    PubMed  CAS  Google Scholar 

  100. Krensky, A. M., Ault, K. A., Reiss, J., Stronunger, J. L., and Burakoff, S. J., 1982, Generation of long term human cytolytic cell lines with persistent natural killer cell activity, J. Immunol 129:1748–1752.

    PubMed  CAS  Google Scholar 

  101. Van de Griend, R. J., Van Krinpen, B. A., Ronteltop, C. P., and Bolhuis, R. L. H., Rapidly expanded activated human killer cell clones have strong anti-tumor cell activity and have the surface phenotype of either T, T-non-T or null cells, J. Immunol. 132:3185–3191.

    Google Scholar 

  102. Gomez, J., Pohajdak, B., O’Neill, S., Wilkins, J., and Greenberg, A. H., 1985, Activation of rat and human alveolar macrophage intracellular microbicidal activity by a preformed cytokine, J. Immunol. 135:1194– 1200.

    PubMed  CAS  Google Scholar 

  103. Pohajdak, B., Gomez, J. C., Wilkins, J. A., Greenberg, A. H., 1984, Tumor-activated NK cells trigger oxidative metabolism, J. Immunol. 133:2430– 2436.

    PubMed  CAS  Google Scholar 

  104. Tortakoff, A. M., and Vassalli, P., 1978, Comparative studies of nitrocellular transport of secretory proteins, J. Cell. Biol., 79:694– 699.

    Google Scholar 

  105. Roussel, E,, Talgoy, M., Henkart, P. A., and Greenberg, A. H., 1986, Stimulation of macrophage (MPH) tumoricidal activity by a cytokine in granules from the rat RNK large granular lymphocyte (LGL) tumor, in: Sixth International Congress of Immunology, Toronto, Canada, p. 560.

    Google Scholar 

  106. Klempner, M. S., Dinarello, C. A., Henderson, W. R., and Gallin, J. I., 1979, Stimulation of neutrophil oxygen-dependent metabolism by human leukocytic pyrogen, J. Clin. Invest. 64:996– 1102

    PubMed  CAS  Google Scholar 

  107. Klempner, M. S., Dinarello, C. A., and Gallin, J. L., 1978, Human leukocyte pyrogen induces the release of specific granule contents from human neutrophils, J. Clin. Invest. 61:1330– 1336.

    PubMed  CAS  Google Scholar 

  108. Griffin, D. E., and Hess, J. L., 1986, Cells with natural killer activity in the cerebrospinal fluid of normal mice and athymic nude mice with acute sindbis virus encephalitis, J. Immunol. 136:1841–1845

    PubMed  CAS  Google Scholar 

  109. Ruscetti, F. W., Mikovits, J. A., Kalyanaraman, V. S., Overton, R., Stevenson, H., Stromberg, K., Herberman, R. B., Farrar, W. L., and Ortaldo, J. R., 1986, Analysis of effector mechanisms against HTLV-I and HTLV-III/LAV-infected lymphoid cells, J. Immunol. 136:3619–3624.

    PubMed  CAS  Google Scholar 

  110. Petkus, A. F., and Baum, L. L., 1987, Natural killer cell inhibition of young spherules and endospores of Coccidioides immitis, J. Immunol. 139:3107– 3111.

    PubMed  CAS  Google Scholar 

  111. Lipscomb, M. F., Alvarellos, T., Toews, G. B., Tompkins, R., Evans, Z., Koo, G., and Kumar, V., 1987, Role of natural killer cells in resistance to Cryptococcus neoformans infections in mice, Am. J. Pathol. 128:354– 361.

    PubMed  CAS  Google Scholar 

  112. Gastl, G. A., Feldmeier, H., Kortmann, C., Daffalla, A. A., and Peter, H. H., 1986, Human schistosomiasis: Deficiency of large granular lymphocytes and indomethacin-sensitive suppression of natural killing, Scand.J. Immunol. 23:319– 325.

    PubMed  CAS  Google Scholar 

  113. Godeny, E. K., and Gauntt, C. J., 1987, Murine natural killer cells limit coxsackievirus B3 replication. J. Immunol. 139:913– 918.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Greenberg, A.H. (1989). Role of Natural Killer Cells in Inflammation and Antibacterial Activity. In: Reynolds, C.W., Wiltrout, R.H. (eds) Functions of the Natural Immune System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0715-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0715-0_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8046-0

  • Online ISBN: 978-1-4613-0715-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics