Role of Natural Killer Cells in Inflammation and Antibacterial Activity

  • Arnold H. Greenberg


The purpose of this chapter is to review the evidence that large granular lymphocytes (LGL) can participate in the inflammatory response, with particular reference to bacterial infections. In this discussion, LGL will refer only to those cells that are identifiably of the natural killer (NK) cell lineage with respect to their membrane phenotype, in contrast to those LGL that may be derived from the T cell lineage. In this way, we will be referring to a natural effector population which has historically been associated with a nonrestricted lytic function and acts independently of the T cell receptor.


Natural Killer Natural Killer Cell Antibacterial Activity Natural Killer Cell Activity Natural Killer Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scala, G., Allavena, P., Djeu, J. Y., Kasahara, T., Ortaldo, J. R., Herberman, R. B., and Oppenheim, J. J., 1984, Human large granular lymphocytes are potent producers of interleukin-1, Nature 309:56–59.PubMedGoogle Scholar
  2. 2.
    Bottazzi, B., Introna, M., Allavena, P., Villa, A., and Mantovani, A., 1985, In vitro migration of human large granular lymphocytes, J. Immunol. 134:2316–2321.PubMedGoogle Scholar
  3. 3.
    Pohajdak, B., Gomez, J., Orr, F. W., Khalil, N., and Greenberg, A. H., 1986, Chemotaxis of large granular lymphocytes, J. Immunol. 136:278– 284.PubMedGoogle Scholar
  4. 4.
    Abo, T., Sugawara, S., Amenomori, A., Itoh, H., Rikiishi, H., Moro, I., Kumagai, K., 1986, Selective phagocytosis of gram-positive bacteria and interleukin-1-like factor production by a subpopulation of large granular lymphocytes, J. Immunol. 136:3189– 3197.PubMedGoogle Scholar
  5. 5.
    Ward, P. A., Lepow, I. H., and Newman, L. J., 1968, Bacterial factors chemotactic for polymorphonuclear leukocytes, Am. J. Pathol. 52:725– 732.PubMedGoogle Scholar
  6. 6.
    Snyderman, R., Phillips, J., and Mergenhagen, S. E., 1970, Polymorphonuclear leukocyte chemotactic activity in rabbit serum and guinea pig serum treated with immune complexes: Evidence for C5a as the major chemotactic factor, Infect. Immun. 1:521– 527.PubMedGoogle Scholar
  7. 7.
    Goldman, D. W., and Goetzl, E. J., 1984, Heterogeneity of human polymorphonuclear leukocyte receptors for leukotriene B4, J. Exp. Med. 159:1027– 1032.PubMedGoogle Scholar
  8. 8.
    Luger, T. A., Charon, J. A., Colot, M., Micksche, M., and Oppenheim, J. J., 1983, Chemotactic properties of partially purified human epidermal cell-derived thymocyte activating factors (ETAF) for polymorphonuclear luekocytes and mononuclear cells, J. Immunol 131:816– 820.PubMedGoogle Scholar
  9. 9.
    Sauder, D. N., Marinessa, N. C., Katz, S. I., Dinarello, C. A., and Gallin, J. I., 1984, Chemotactic cytokines: The role of leukocyte pyrogen and epidermal cell thymocyte activating factor in neutrophil chemotaxis, J. Immunol. 132:828– 832.PubMedGoogle Scholar
  10. 10.
    Ming, W. J., Bersoni, L., and Mantovani, A., 1987, Tumor necrosis factor is chemotactic for monocytes and polymorphonuclear leukocytes, J. Immunol. 138:1469– 1474.PubMedGoogle Scholar
  11. 11.
    Snyderman, R., and Goetzl, E. J., 1981, Molecular and cellular mechanisms of leukocyte chemotaxis, Science 213:830–837.PubMedGoogle Scholar
  12. 12.
    Snyderman, R., and Pike, M. C., 1984, Chemoattractant receptors on phagocytic cells, Annu. Rev. Immunol. 2:257– 271.PubMedGoogle Scholar
  13. 13.
    Russel, R. J., Wilkinson, P. C., Sless, F., and Parrott, D. M. V., 1975, Chemotaxis of lymphoblasts, Nature 256:646–648.Google Scholar
  14. 14.
    Schreiner, G. F., and Unanue, E. R., 1975, Anti-Ig triggered movements of lymphocytes. Specificity and lack of evidence for directional migration, J. Immunol. 114:809– 814.PubMedGoogle Scholar
  15. 15.
    Parrott, D. M. V., and Wilkinson, P. C., 1981, Lymphocyte locomotion and migration, Prog. Allergy 28:193.PubMedGoogle Scholar
  16. 16.
    Center, D. M., and Cruikshank, W., 1982, Modulation of lymphocyte migration by human lymphokines. I. Identification and characterization of chemoattractant activity for lymphocytes from mitogen-stimulated mononuclear cells, J. Immunol. 128:2563–2574.PubMedGoogle Scholar
  17. 17.
    Kornfeld, H., Berman, J. C., Beer, D. J., Center, D. M., 1985, Induction of human T lymphocytes motility by interleukin-2, J. Immunol. 134:3887–3890.PubMedGoogle Scholar
  18. 18.
    Hunninghake, G. W., Glazier, A. J., Monick, M. M., and Dinarello, C. A., 1987, Inter- leukin-1 is a chemotactic factor for human T-lymphocytes, Am. Rev. Respir. Dis. 135:66–71.PubMedGoogle Scholar
  19. 19.
    Wilkinson, P. C., Parrott, M. V., Russel, R. J., and Sless, F., 1977, Antigen-induced locomotor responses in lymphocytes, J. Exp. Med. 145:1158– 1168.PubMedGoogle Scholar
  20. 20.
    Muse, K. E., and Koren, H. S., 1982, The uropod as an integral and specialized structure of large granular lymphocytes, in: NK and Other Natural Effector Cells (R. B. Herberman, ed.), Academic Press, New York, pp. 1035–1040.Google Scholar
  21. 21.
    Uchida, A., Colot, M., and Micksche, M., 1984, Suppression of natural killer cell activity by adherent effusion cells of cancer patients. Suppression of motility, binding capacity and lethal hit of NK cells, Br. J. Cancer 49:17– 23.PubMedGoogle Scholar
  22. 22.
    O’Neill, G. J., and Parrott, D. M. V., 1977, Locomotion of human lymphoid cells. I. Effect of culture and ConA and T and non-T lymphocytes, Cell. Immunol. 33:257– 266.PubMedGoogle Scholar
  23. 23.
    Zigmond, S. H., and Hirsch, J. G., 1973, Leukocyte locomotion and chemotaxis. New methods for evaluation, and demonstration of a cell derived chemotactic factor, J. Exp. Med. 137:387– 410.PubMedGoogle Scholar
  24. 24.
    Polentarutti, N., Bottazzi, B., Balotta, C., Erroi, A., and Mantovani, A., 1986, Modulation of the locomotor capacity of human large granular lymphocytes, Cell. Immunol. 101:204– 212.PubMedGoogle Scholar
  25. 25.
    Mclntyre, K. W., and Welsh, R. M., 1986, Accumulation of natural killer and cytotoxic T large granular lymphocytes in the liver during virus infection, J. Exp. Med. 164:1667– 1681.Google Scholar
  26. 26.
    Stein-Streilein, J., Bennett, M., Mann, D., and Kumar, V., 1983, Natural killer cells in mouse lung, surface phenotype, and response to local influenza virus infection, J. Immunol. 131:2699– 2704.PubMedGoogle Scholar
  27. 27.
    Wiltrout, R. H., Mathieson, B. J., Talmadge, J. E., Reynolds, C. W., Zhang, S. R., Herberman, R. B., and Ortaldo, J. R., 1982, Augmentation of organ-associated NK activity by biological response modifiers: Isolation and characterization of large granular lymphocytes from the liver, J. Exp. Med. 160:1431– 1449.Google Scholar
  28. 28.
    Sklar, L. A., and Finnay, D. A., 1982, Analysis of ligand-receptor interactions with the fluorescence activated cell sorter, Cytometry 3:161–167.PubMedGoogle Scholar
  29. 29.
    Reynolds, C. W., Bere, E. W., and Ward, J. M., 1984, Natural killer activity in the rat. III. Characterization of transplantable large granular lymphocyte (LGL) leukemias in F344 rat, J. Immunol. 132:534– 540.PubMedGoogle Scholar
  30. 30.
    Haller, O., and Wigzell, H., 1977, Suppression of natural killer cell activity with radioactive strontium: Effector cells are marrow dependent, J. Immunol. 118:1503– 1506.PubMedGoogle Scholar
  31. 31.
    Lamm, M. E., 1976, Cellular aspects of immunoglobulin A, Adv. Immunol. 22:223– 290.PubMedGoogle Scholar
  32. 32.
    Kraal, G., Weissman, I. L., and Butcher, E. C., 1982, Germal center B cells: Antigen specificity and changes in heavy chain isotype expression, Nature 298:377–379.PubMedGoogle Scholar
  33. 33.
    Sprent, J., 1980, Antigen-induced selective sequestration of T lymphocytes: Role of the major histocompatibility complex, Monogr. Allergy 16:233– 244.PubMedGoogle Scholar
  34. 34.
    Gowans, J. L., and Knight, E. J., 1964, The route of recirculation of lymphocytes in the rat, Proc. R. Soc. Ser. B 159:257– 264.Google Scholar
  35. 35.
    Butcher, E. C., 1988, The regulation of lymphocyte traffic, Curr. Top. Microbiol. Immunol. (in press)Google Scholar
  36. 36.
    Reynolds, C. W., and Ward, J. M., 1986, Tissue and organ distribution of NK cells, in: (E. Lotzova and R. B. Herberman eds.), Immunobiology of Natural Killer Cells, CRC Press, Boca Raton, FL, pp. 63–72.Google Scholar
  37. 37.
    Timonen, T., Reynolds, C. W., Ortaldo, J. R., and Herberman, R. B., 1982, Isolation of human and rat natural killer cells, J. Immunol. Methods 51:269– 277.PubMedGoogle Scholar
  38. 38.
    Fox, R. I., Fong, S., Tsoukas, S., and Vaughn, J. H., 1984, Characterization of recirculating lymphocytes in rheumatoid arthritis patients: Selective deficiency of natural killer cells in thoracic duct lymph, J. Immunol. 132:2883– 2887.PubMedGoogle Scholar
  39. 39.
    Kunagai, K., Itoh, K., Suzuki, R., Hinuma, S., and Saitoh, F., 1982, Studies of murine large granular lymphocytes. I. Identification as effector cells in NK and K cytotoxicities, J. Immunol. 129:388– 394.Google Scholar
  40. 40.
    Itoh, K., Suzuki, R., Umezu, Y., Hanaumi, K., and Kumagai, K., 1982, Studies of murine large granular lymphocytes. II. Tissue, strain and age distribution of LGL and LAL, J. Immunol. 129:395– 400.PubMedGoogle Scholar
  41. 41.
    Ward, J. M., Argilan, F., and Reynolds, C. W., 1983, Immunoperoxidase localization of large granular lymphocytes in normal tissues and lesions of thymic nude rats, J. Immunol. 131:132– 139.PubMedGoogle Scholar
  42. 42.
    Zoller, M., Andrighetto, G., and Heyman, B., 1982, Natural and antibody-dependent killer cells in the thymus, Eur. J. Immunol. 12:914– 921.PubMedGoogle Scholar
  43. 43.
    Kaneda, K., Dan, C., and Wake, K., 1983, Pit cells as natural killer cells, Biomed. Res. 4:567– 576.Google Scholar
  44. 44.
    Lukomska, B., Olzewski, W. L., and Engeset, A., 1983, Rat liver contains a distinct blood-borne population of NK cells resistant to anti-asialo GM1 antiserum, Immunol. Lett. 6:277– 281.PubMedGoogle Scholar
  45. 45.
    Tagliabue, A., Befus, A. D., Clark, D. A., and Bienenstock, J., 1982, Characteristics of natural killer cells in the murine intestinal epithelium and lamina propria, J. Exp. Med. 155:1785– 1796.PubMedGoogle Scholar
  46. 46.
    Leventon, G. S., Kulkarni, S. S., Meistrich, M. L., Newland, J. R., and Zanden, A. R., 1983, Isolation of murine small bowel intraepithelial lymphocytes, J. Immunol. Methods 63:35– 44.PubMedGoogle Scholar
  47. 47.
    Rolstad, B., Herberman, R. B., and Reynolds, C. W., 1986, Natural killer cell activity in the rat. V. The circulation patterns and tissue localization of peripheral blood large granular lymphocytes (LGL), J. Immunol. 136:2800– 2808.PubMedGoogle Scholar
  48. 48.
    Villa, C. B. F., Vecchi, A., Giavazzi, R., Introna, M., Avallone, R., and Mantovani, A., 1982, Natural cytotoxic activity in human lungs, Clin. Exp. Immunol. 47:437– 444.PubMedGoogle Scholar
  49. 49.
    Robinson, B. W. S., Pinkston, P., and Crystal, R. G., 1984, Natural killer cells are present in normal human lung but are functionally impotent, J. Clin. Invest. 74:942– 950.PubMedGoogle Scholar
  50. 50.
    Bordignon, C., Villa, F., Allavena, P., Intrana, M., Biondi, A., Avallone, R., and Mantovani, A., 1982, Inhibition of natural killer activity by human bronchial alveolar macrophages, J. Immunol. 129:587– 591.PubMedGoogle Scholar
  51. 51.
    Mann, D. W., Sonnenfeld, G., and Stein-Streilein, J., 1983, Pulmonary compartmen- talization of interferon and natural killer cell activity, Proc. Soc. Exp. Biol. Med. 180:224– 230.Google Scholar
  52. 52.
    Bukowski, J. F., Woda, B. A., Habu, S., Okumura, K., and Welsh, R. M., 1983, Natural killer cell depletion enhances virus synthesis and virus-induced hepatitis in vivo, J. Immunol. 131:1531– 1538.PubMedGoogle Scholar
  53. 53.
    Bukowski, J. F., Biron, C. A., and Welsh, R. M., 1983, Elevated natural killer cell- mediated cytotoxicity, plasma interferon and tumor cells rejection in mice persistently infected with lymphocytic choriomeningitis, J. Immunol. 131:991– 996.PubMedGoogle Scholar
  54. 54.
    Biron, C. A., and Welsh, R. M., 1982, Proliferation and role of natural killer cells during viral infection, in: NK Cells and Other Natural Effector Cells ( R. B. Herberman, ed.), Academic Press, New York, p. 493.Google Scholar
  55. 55.
    Welsh, R. M., 1978, Cytotoxic cells induced during lymphocyte choriomeningitis virus infection in mice. I. Characterization of natural killer cell induction, J. Exp. Med. 148:163– 181.PubMedGoogle Scholar
  56. 56.
    Stein-Streilein, J., Witte, P. L., Streilein, J. W., and Guffee, J., 1985, Local cellular defenses in influenza-infected lungs, Cell. Immunol. 95:234– 246.PubMedGoogle Scholar
  57. 57.
    Niederkorn, J. Y., Brieland, J. K., and Mayhew, E., 1983, Enhanced natural killer cell activity in experimental murine encephalitozoonosis, Infect. Immun. 41:302– 307.PubMedGoogle Scholar
  58. 58.
    Tarkkanen, J., Saksela, E., and Lanier, L. L., 1986, Bacterial activation of human natural killer cells. Characteristics of the activation process and identification of the effector cells, J. Immunol. 137:2418– 2433.Google Scholar
  59. 59.
    Wiltrout, R. H., Denn, A. C., and Reynolds, C. W., 1986, Augmentation of organ-associated NK activity by BRM’s: Association of NK activity with mononuclear cell infiltration, Pathol. Immunopathol. Res. 5:219– 233.PubMedGoogle Scholar
  60. 60.
    Wiltrout, R. H., Herberman, R. B., Zhang, S. K., Chirigos, M. A., Ortaldo, J. R., Green, K. M. Jr., and Talmadge, J. E., 1985, Role of organ-associated NK cells in decreased formation of experimental metastases in lung and liver, J. Immunol. 134:4267– 4275.PubMedGoogle Scholar
  61. 61.
    Talmadge, J. E., Schneider, M., Collins, M., Phillips, H., Herberman, R. B., Wiltrout, R. H., 1985, Augmentation of NK cell activity in tissue specific sites by liposomes incorporating MTP-PE, J. Immunol. 135:1477– 1485.PubMedGoogle Scholar
  62. 62.
    Wiltrout, R. H., Talmadge, J. E., Herberman, R. B., 1988, Biological response modifiers in augmentation of natural killer activity: Potential role in prevention and treatment of metastic disease, Adv. Immun. Cancer Ther. (in press).Google Scholar
  63. 63.
    Doherty, P. C., and Korngold, R., 1983, Characteristics of poxvirus-induced meningitis: Virus-specific and non-specific cytotoxic effectors in the inflammatory exudate, Scand. J. Immunol 18:107– 114.Google Scholar
  64. 64.
    Griffin, D. E., and Hess, J. L., 1986, Cells with natural killer activity in the cerebrospinal fluid of normal mice and athymic nude mice with acute sinbus virus encephalitis, J. Immunol. 136:1841– 1845.PubMedGoogle Scholar
  65. 65.
    Biron, C. A., Turgiss, L. R., and Welsh, R. M., 1983, Increase in NK cell number and turnover rate during acute viral infection, J. Immunol. 131:1539– 1545.PubMedGoogle Scholar
  66. 66.
    Natuk, R. J., and Welsh, R. M., 1987, Accumulation and chemotaxis of natural killer/ large granular lymphocytes at sites of virus replication, J. Immunol. 138:877– 883.PubMedGoogle Scholar
  67. 67.
    Phillips, J. H., and Lanier, L. L., 1986, Dissection of the lymphokine activated killer phenomena: Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis, J. Exp. Med. 164:814– 825.PubMedGoogle Scholar
  68. 68.
    Ettinghausen, S. E., Lipford, E. H., Mule, J. J., and Rosenberg, S. A., 1985, Recombinant interleukin 2 stimulates in vivo proliferation of adoptively transferred lymphokine-activated killer (LAK) cells, J. Immunol. 135:3623– 3635.PubMedGoogle Scholar
  69. 69.
    Ettinghausen, S. E., Lipford, E. H., Mule, J. J., and Rosenberg, S. A., 1985, Systemic administration of recombinant interleukin 2 stimulates in vivo lymphoid proliferation in tissues, J. Immunol. 135:4488– 4497.Google Scholar
  70. 70.
    Henney, C. S., Kuribayashi, K., Kern, D. E., and Gillis, S., 1981, Interleukin-2 augments natural killer cell activity, Nature 291:335–337.PubMedGoogle Scholar
  71. 71.
    Grimm, E. A. A., Mazumider, A., Zhang, H. Z., and Rosenberg, S. A., 1982, Lymphokine-activated killer phenomenon. Lysis of natural-killer resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes, J. Exp. Med. 155:1823– 1841.PubMedGoogle Scholar
  72. 72.
    Mule, J. J., Shu, S., Schwartz, S. L., and Rosenberg, S. A., 1984, Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2, Science 255:1487–1489.Google Scholar
  73. 73.
    Lafreniere, R., and Rosenberg, S. A., 1985, Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2, Cancer Res. 45:3735–3741.PubMedGoogle Scholar
  74. 74.
    Carroll, A. M., Palladino, M. A., Oettgen, H., and De Sousa, M., 1983, In vivo localization of cloned IL-2-dependent T cells, Cell. Immunol. 76:69– 76.PubMedGoogle Scholar
  75. 75.
    Djeu, J. Y., Stocks, N., Zoon, K., Stanton, G. J., Timonen, T., and Herberman, R. B., 1982, Positive self-regulation of cytotoxicity in human natural killer cells by production of interferon upon exposure to influenza and herpes virus, J. Exp. Med. 156:1222– 1234.PubMedGoogle Scholar
  76. 76.
    Timonen, T., Saksela, E., Virtanen, I., and Cantell, K., 1980, Natural killer cells are responsible for interferon-induced in human lymphocytes by tumor cell contact, Eur. J. Immunol. 10:422– 427.Google Scholar
  77. 77.
    Handa, K., Suzuki, R., Matsui, H., Shimizu, Y., and Kumagai, K., 1983, Natural killer (NK) cells as a responder to interleukin 2 (IL2). II. IL2-induced interferon-γ production, J. Immunol. 130:988– 992.PubMedGoogle Scholar
  78. 78.
    Munakata, K., Semba, U., Shibuya, Y., Kuwano, K., Akagi, M., and Arai, S., 1985, Induction of interferon-γ by human natural killer cells stimulated by hydrogen peroxide, J. Immunol. 134:2449– 2455.PubMedGoogle Scholar
  79. 79.
    Sauder, D., Mounessa, N. L., Katz, S. I., Dinarello, C. A., and Gallin, J. I., 1984, Chemotactic cytokines: The role of leukocytic pyrogen and epidermal cell thymocyte-activating factor in neutrophil chemotaxis, J. Immunol. 132:828– 832.PubMedGoogle Scholar
  80. 80.
    Miossec, P., Yu, C.-L., and Ziff, M., 1984, Lymphocyte chemotactic activity of human interleukin-1, J. Immunol. 133:2007– 2011.PubMedGoogle Scholar
  81. 81.
    Degliantoni, G., Murphy, M., Kobayashi, M., Francis, M. K., Perussia, B., and Trincheri, G., 1985, Natural killer (NK) cell-derived hematopoietic colony-inhibiting activity and NK cytotoxic factor. Relationship with tumor necrosis factor and synergism with immune interferon, J. Exp. Med. 162:1512– 1530.PubMedGoogle Scholar
  82. 82.
    Ming, W. J., Bersani, L., and Mantovani, A., 1987, Tumor necrosis factor is chemotactic for monocytes and polymorphonuclear leukocytes, J. Immunol. 138:1469– 1474.PubMedGoogle Scholar
  83. 83.
    Kasahara, T., Djeu, J. Y., Dougherty, S. F., and Oppenheim, J. J., 1983, Capacity of human large granular lymphocytes (LGL) to produce multiple lymphokines: Interleukin 2, interferon and colony-stimulating factor, J. Immunol. 131:2379– 2384.PubMedGoogle Scholar
  84. 84.
    Procopio, A. D. G., Allavena, P., and Ortaldo, J. R., 1985, Noncytotoxic functions of natural killer (NK) cells: Large granular lymphocytes (LGL) produce a B cell growth factor (BCGF), J. Immunol. 135:3264– 3271.PubMedGoogle Scholar
  85. 85.
    Greenberg, A. H., Khalil, N., Pohajdak, B., Talgoy, M., Henkart, P., and Orr, F. W., 1986, NK-leukocyte chemotactic factor (NK-LCF). A large granular lymphocyte (LGL) granule-associated chemotactic factor, J. Immunol. 137:3224– 3230.PubMedGoogle Scholar
  86. 86.
    Henkart, P. A., Millard, P. J., Reynolds, C. W., and Henkart, M. P., 1984, Cytolytic activity of purified cytoplasmic granules from cytotoxic rat large granular lymphocyte tumors, J. Exp. Med. 160:75– 93.PubMedGoogle Scholar
  87. 87.
    Henkart, P. A. (personal communication).Google Scholar
  88. 88.
    MacDermott, R. P., Schmidt, R. E., Caulfield, J. P., Hein, A., Bartley, G. T., Ritz, J., Schlossman, S. F., Austen, K. F., and Stevens, R. L., 1985, Proteoglycans in cell mediated cytotoxicity. Identification, localization and exocytosis of a chondroitin sulfate proteoglycan from human cloned natural killer cells during target cell lysis, J. Exp. Med. 162:1771– 1787.PubMedGoogle Scholar
  89. 89.
    Nencioni, K., Villa, L., Boraschi, D., Berti, B., and Taglibue, A., 1983, Natural and antibody-dependent cell-mediated activity against Salmonella typhimurium by peripheral and intestinal lymphoid cells in mice, J. Immunol. 130:903– 907.PubMedGoogle Scholar
  90. 90.
    Lowell, G. H., Smith, L. F., Griffiss, J. M., and Brandt, B. L., 1980, IgA-dependent, monocyte-mediated antibacterial activity, J. Exp. Med. 152:452– 457.PubMedGoogle Scholar
  91. 91.
    Lowell, G. H., Smith, L. F., Artenstein, M. S., Nash, G. S., and MacDermott, R. P., 1979, Antibody-dependent cell-mediated antibacterial activity of human mononuclear cell. I. K-lymphocytes and monocytes are effective against meningococci in cooperation with human immune sera, J. Exp. Med. 150:127– 137.PubMedGoogle Scholar
  92. 92.
    Lowell, G. H., MacDermott, R. P., Summers, P. L., Reeder, A. A., Bertovich, M. J., and Formal, S. B., 1980, Antibody-dependent cell-mediated antibacterial activity: K lymphocytes, monocytes and granulocytes are effective against Shigella, J. Immunol. 125:2778– 2784.PubMedGoogle Scholar
  93. 93.
    Morgan, D. H., DuPont, H. L., Gonik, B., and Kohl, S., 1984, Cytotoxicity of human peripheral blood and colostral leukocytes against Shigella species, Infect. Immun. 46:25– 33.PubMedGoogle Scholar
  94. 94.
    Morgan, D. R., DuPont, H. L., Wood, L. V., and Kohl, S., 1984, Cytotoxicity of leukocytes from normal and Shigella-susceptible (opium-treated) guinea pigs against virulent Shigella sonnei, Infect. Immun. 46:22– 24.PubMedGoogle Scholar
  95. 95.
    Tagliabue, A., Nencioni, L., Villa, L., Keren, D. F., Lowell, G. H., and Boraschi, D., 1983, Antibody-dependent cell-mediated antibacterial activity of intestinal lymphocytes with secretory IgA, Nature 300:184–186.Google Scholar
  96. 96.
    Tagliabue, A., Nencioni, L., Villa, L., and Boraschi, D., 1984, Genetic control of in vitro natural cell-mediated activity against Salmonella typhimurium by intestinal and splenic lymphoid cells in mice, Clin. Exp. Immunol. 56:531– 536.PubMedGoogle Scholar
  97. 97.
    Klimpel, G., Niesel, D. W., and Klimpel, K. D., 1986, Natural cytotoxic effector cell activity against Shigella flexneri-infected HeLa cells, J. Immunol. 136:1081–1086.PubMedGoogle Scholar
  98. 98.
    Peters, P. M., Ortaldo, J: R., Shalaby, M. R., Svedersky, L. P., Nedwin, G. E., Bring- man, T. S., Hass, P. E., Aggarwal, B. B., Herberman, R. B., Goedel, D. V., and Palladino, M. A. Jr., 1986, Natural killer cell-sensitive targets stimulate production of TNF α but not TNF ß (lymphotoxin) by highly purified human peripheral blood large granular lymphocytes, J. Immunol. 137:2592–2598.PubMedGoogle Scholar
  99. 99.
    Wright, S. C., and Bonavida, B., 1983, YAC-1 variant clones selected for resistance to natural killer cytotoxic factors are also resistant to natural killer cell-mediated cytotoxicity, Proc. Natl. Acad. Sci. USA 80:1688–1692.PubMedGoogle Scholar
  100. 100.
    Krensky, A. M., Ault, K. A., Reiss, J., Stronunger, J. L., and Burakoff, S. J., 1982, Generation of long term human cytolytic cell lines with persistent natural killer cell activity, J. Immunol 129:1748–1752.PubMedGoogle Scholar
  101. 101.
    Van de Griend, R. J., Van Krinpen, B. A., Ronteltop, C. P., and Bolhuis, R. L. H., Rapidly expanded activated human killer cell clones have strong anti-tumor cell activity and have the surface phenotype of either T, T-non-T or null cells, J. Immunol. 132:3185–3191.Google Scholar
  102. 102.
    Gomez, J., Pohajdak, B., O’Neill, S., Wilkins, J., and Greenberg, A. H., 1985, Activation of rat and human alveolar macrophage intracellular microbicidal activity by a preformed cytokine, J. Immunol. 135:1194– 1200.PubMedGoogle Scholar
  103. 103.
    Pohajdak, B., Gomez, J. C., Wilkins, J. A., Greenberg, A. H., 1984, Tumor-activated NK cells trigger oxidative metabolism, J. Immunol. 133:2430– 2436.PubMedGoogle Scholar
  104. 104.
    Tortakoff, A. M., and Vassalli, P., 1978, Comparative studies of nitrocellular transport of secretory proteins, J. Cell. Biol., 79:694– 699.Google Scholar
  105. 105.
    Roussel, E,, Talgoy, M., Henkart, P. A., and Greenberg, A. H., 1986, Stimulation of macrophage (MPH) tumoricidal activity by a cytokine in granules from the rat RNK large granular lymphocyte (LGL) tumor, in: Sixth International Congress of Immunology, Toronto, Canada, p. 560.Google Scholar
  106. 106.
    Klempner, M. S., Dinarello, C. A., Henderson, W. R., and Gallin, J. I., 1979, Stimulation of neutrophil oxygen-dependent metabolism by human leukocytic pyrogen, J. Clin. Invest. 64:996– 1102PubMedGoogle Scholar
  107. 107.
    Klempner, M. S., Dinarello, C. A., and Gallin, J. L., 1978, Human leukocyte pyrogen induces the release of specific granule contents from human neutrophils, J. Clin. Invest. 61:1330– 1336.PubMedGoogle Scholar
  108. 108.
    Griffin, D. E., and Hess, J. L., 1986, Cells with natural killer activity in the cerebrospinal fluid of normal mice and athymic nude mice with acute sindbis virus encephalitis, J. Immunol. 136:1841–1845PubMedGoogle Scholar
  109. 109.
    Ruscetti, F. W., Mikovits, J. A., Kalyanaraman, V. S., Overton, R., Stevenson, H., Stromberg, K., Herberman, R. B., Farrar, W. L., and Ortaldo, J. R., 1986, Analysis of effector mechanisms against HTLV-I and HTLV-III/LAV-infected lymphoid cells, J. Immunol. 136:3619–3624.PubMedGoogle Scholar
  110. 110.
    Petkus, A. F., and Baum, L. L., 1987, Natural killer cell inhibition of young spherules and endospores of Coccidioides immitis, J. Immunol. 139:3107– 3111.PubMedGoogle Scholar
  111. 111.
    Lipscomb, M. F., Alvarellos, T., Toews, G. B., Tompkins, R., Evans, Z., Koo, G., and Kumar, V., 1987, Role of natural killer cells in resistance to Cryptococcus neoformans infections in mice, Am. J. Pathol. 128:354– 361.PubMedGoogle Scholar
  112. 112.
    Gastl, G. A., Feldmeier, H., Kortmann, C., Daffalla, A. A., and Peter, H. H., 1986, Human schistosomiasis: Deficiency of large granular lymphocytes and indomethacin-sensitive suppression of natural killing, Scand.J. Immunol. 23:319– 325.PubMedGoogle Scholar
  113. 113.
    Godeny, E. K., and Gauntt, C. J., 1987, Murine natural killer cells limit coxsackievirus B3 replication. J. Immunol. 139:913– 918.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Arnold H. Greenberg
    • 1
  1. 1.Manitoba Institute of Cell BiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations