The Natural Immune System in Autoimmune and Neurological Disease

  • Jean E. Merrill

Abstract

Since Erlich’s first hypothesis of “horror autotoxicus” and the established paradigm that the immune response does not or should not react to self, immunologists have been made increasingly aware of instances where autoimmunity is neither a rare nor a harmful event. Recognition of modified self seems essential for the removal of virus-infected cells, and idiotype-antiidiotype networks may be regulators of the humoral immune response. Nonetheless, there are numerous autoimmune diseases in which regulation of natural immunity seems to have gone awry. The unanswered question is whether this is in primary association with the disease process or the secondary result of the chronicity of an aberrant immune response. Organ-specific autoimmune diseases include acquired immune hemolytic disorders such as hemolytic anemia, idiopathic thrombocytopenia purpura, or idiopathic neutropenia; diseases of the nervous system or neuromuscular tissue such as multiple sclerosis and myasthenia gravis; diseases of exocrine and endocrine systems such as Hashimoto’s thyroiditis, Graves’ disease, pernicious anemia, Addison’s disease, and diabetes mellitus; and diseases of other organs like pemphigus, bullous pemphigoid, biliary cirrhosis, ulcerative colitis, and uveitis. Systemic diseases that are non-organ-specific include systemic lupus erythematosus, rheumatoid arthritis, Goodpasture’s syndrome, and Sjögren’s syndrome.

Keywords

Hepatitis Neuropathy Glucocorticoid Adrenaline Indomethacin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith, K., 1980, T cell growth factor, Immunol. Rev. 51:337–357.PubMedGoogle Scholar
  2. 2.
    De Vries, J. E., Figdor G. C., and Spits, H., 1983, Regulation of human NK activity against adherent tumor target cells by monocyte subpopulations, IL1 and IFNs, in: NK Cells and Other Natural Effector Cells( R. B. Herberman, ed.), Academic Press, New York, pp. 657–668.Google Scholar
  3. 3.
    Kuribayashi, K., Gillis, S., Kern, D. E., and Henney, C. S., 1981, Murine NK cell cultures: Effects of interleukin 2 and interferon on cell growth and cytotoxic reactivity, J. Immunol 126:2321–2327.PubMedGoogle Scholar
  4. 4.
    Kern, D. E., Gillis, S., Okada, M., and Henney, C. S., 1981, The role of interleukin 2 (IL2) in the differentiation of cytotoxic T cells: The effect of monoclonal anti IL2 antibody and absorption with IL2 dependent T cell lines. J. Immunol. 127:1323–1328.PubMedGoogle Scholar
  5. 5.
    Trinchieri, G., and Santoli, D., 1978, Anti-viral activity induced by culturing lymphocytes with tumor derived or virus transformed cells, J. Exp. Med. 147:1314–1333.PubMedGoogle Scholar
  6. 6.
    Herberman, R. B., Ortalda, J. R., and Bonnard, G. D., 1979, Augmentation by interferon of human natural and antibody-dependent cell mediated cytotoxicity, Nature 277:221–223.PubMedGoogle Scholar
  7. 7.
    Saksela, E., and Timonen, T., 1980. Cellular interactions in the augmentation of hu¬man NK activity by interferon, Ann. N.Y. Acad. Sci. 350:102–111.PubMedGoogle Scholar
  8. 8.
    Matheson, D. S., Green, B., and Tan, Y. J., 1981, Human interferons α and β inhibit T cell dependent and stimulate T cell independent mitogenesis and natural cell cytotoxicity: Relationship to chromosome 21, Cell. Immunol. 165:366–372.Google Scholar
  9. 9.
    Herberman, R. B., Ortaldo, J. R., Rubinstein, M., and Pestka S., 1981, Augmentation of natural and antibody-dependent cell-mediated cytotoxicity by pure human leukocyte interferon, J. Clin. Immunol. 1:149–153.PubMedGoogle Scholar
  10. 10.
    Dempsey, R. A., Dinarello, C. A., Mier, J. W., Rosenwasser, L. J., Allegretta, M., Brown, T. E., and Parkinson, D. R., 1982, The differential effects of human leukocytic pyrogen/lymphocyte-activating factor, T cell growth factor, and interferon on human natural killer cell activity, J. Immunol. 129:2504–2510.PubMedGoogle Scholar
  11. 11.
    Donzig, W., Stadler, B. M., and Herberman, R. B., 1983, Interleukin 2 dependence of human natural killer (NK) activity, J. Immunol. 130:1970–1973.Google Scholar
  12. 12.
    Handa, K., Suzuki, R., Matsui, K., Shimizu, Y., and Kumagai, K., Natural killer (NK) cells as a responder to interleukin 2 (IL2). II. IL2 induced interferon production, J. Immunol. 130:988–992.Google Scholar
  13. 13.
    Ullberg, M., Merrill, J., and Jondal, M., 1981, Interferon-induced NK augmentation in human. An analysis of target recognition effector cell recruitment and effector cell recycling. Scand. J. Immunol. 14:285–292.PubMedGoogle Scholar
  14. 14.
    Saksela, E., Timonen, T., Ranki, A., and Hayry, P., 1979, Morphological and functional characterization of isolated effector cells responsible for human natural killer activity to fetal fibroblasts and to cultured cell line targets, Immunol. Rev. 44:71–95.PubMedGoogle Scholar
  15. 15.
    Pape, G. R., Moretta, L., Troye, M., and Perlmann P., 1979, Natural cytotoxicity of human Fc receptor positive T lymphocytes after surface modulation with immune complexes, Scand.J. Immunol. 9:291–299.PubMedGoogle Scholar
  16. 16.
    Merrill, J. E., Ullberg, M., and Jondal. M., 1981, Influence of IgG and IgM receptor triggering on human natural killer cell cytotoxicity measured on the level of the single effector cell, Eur. J. Immunol. 11:536–541.PubMedGoogle Scholar
  17. 17.
    Passwell, J., Rosen, F. S., and Merler, E., 1980, The effect of Fc fragments on IgG on human mononuclear cell responses, Cell. Immunol. 52:395–403.PubMedGoogle Scholar
  18. 18.
    Poleshuck, L. C., and Strausser, H. R., 1980, Immune complex induced prostaglandin production by monocytes of normal human subjects and cancer patients, Prostaglandins Med. 4:3630–375.Google Scholar
  19. 19.
    Baker, P. E., Fahey, J. V., and Munck, A., 1981, Prostaglandin inhibition of T cell proliferation is mediated at two levels, Cell. Immunol. 61:52–58.PubMedGoogle Scholar
  20. 20.
    Rappaport, R. S., and Dodge, G. R., 1982, Prostaglandin E inhibits the production of human interleukin 2, J Exp. Med. 155:943–948.PubMedGoogle Scholar
  21. 21.
    Brunda, M. J., Herberman, R. B., and Holden, H. T., 1980, Inhibition of murine natural killer cell activity by prostaglandins, J. Immunol. 124:2682–2687.PubMedGoogle Scholar
  22. 22.
    Koren, H. S., Anderson, S. J., Fischer, D. G., Copeland, C. S.., and Jensen, P. J., Regulation of human natural killing. I. The role of monocytes, interferon, and prostaglandins, J. Immunol. 127:2007–2013.Google Scholar
  23. 23.
    Jondal, M., Merrill, J., and Ullberg, M., 1981, Monocyte induced human natural killer cell suppression followed by increased cytotoxic activity during short term in vitroculture in autologous serum, Scand. J. Immunol. 14:555–563.PubMedGoogle Scholar
  24. 24.
    Merrill, J. E., 1983, Natural (NK) and other antibody dependent cellular cytotoxicity (ADCC) activities can be differentiated by their different sensitivities to interferon and prostaglandin Ei, J. Clin. Immunol. 3:42–50.PubMedGoogle Scholar
  25. 25.
    Herberman, R. B., and Ortaldo, J. R., 1981, Natural killer cells: Their role in defenses against disease, Science 214:24–25.PubMedGoogle Scholar
  26. 26.
    Welsh, R. M., 1980, Natural killer cells in virus infections, in: Current Topics in Microbiology and Immunology( O. Haller, ed.), Springer-Verlag, Berlin, pp. 739–765.Google Scholar
  27. 27.
    Timonen, T., Saksela, E., Virtanen, I., and Cantell, K., 1980, Natural killer cells are responsible for the interferon production in human lymphocytes by tumor cell contact, Eur. J. Immunol. 10:422–427.Google Scholar
  28. 28.
    Peter, H., Dallugge, H., Zavatvsky, R., Euler, S., Leibold, W., and Kirchner, H., 1980, Human peripheral null lymphocytes. II. Producers of type-1 interferon upon stimulation with tumor cells, herpes simplex virus and Corynebacterium parvum, Eur. J. Immunol. 10:547–555.PubMedGoogle Scholar
  29. 29.
    Timonen, T, Ortaldo, J. R., and Herberman, R. B., 1981, Characteristics of human large granular lymphocytes and relationship to natural killer and K cells, J. Exp. Med. 153:569–582.PubMedGoogle Scholar
  30. 30.
    Kato, T., and Minagawa, T., 1981, Enahncement of cytotoxicity of human peripheral blood lymphocytes by interferon, Microbiol. Immunol. 25:837–850.PubMedGoogle Scholar
  31. 31.
    Shearn, M. A., Tu, W. H., Stephens, B. G., and Lee, J. C., 1970, Virus-like structures in Sjogren’s syndrome, Lancet 1:568–569.PubMedGoogle Scholar
  32. 32.
    Minato, N., Takeda, A., Kano, S., Takaku, F., 1982, Studies of the functions of natural kijler-interferon systems in patients with Sjogren’s syndrome, J. Clin. Invest. 69:581–588.PubMedGoogle Scholar
  33. 33.
    Goto, M., Tanimoto, K., Shihara, T., and Horiuchi, Y., 1981, Natural cell-mediated cytotoxicity in Sjogren’s syndrome and rheumatoid arthritis, Arth. Rheum. 24:1377–1382.Google Scholar
  34. 34.
    Fox, R. I., Hugli, T. E., Lanier, L. L., Morgan, E. L., and Howell, F., 1985, Salivary gland lymphocytes in primary Sjogren’s syndrome lack lymphocyte subsets defined by Leu7 and Leu 11 antigens, J. Immunol. 135:207–214.PubMedGoogle Scholar
  35. 35.
    Pedersen, B. K., Oxholm, P., Manthorpe, R., and Andersen, V., 1986, Interleukin 2 augmentation of the defective natural killer cell activity in patients with primary Sjögren’s syndrome. Clin. Exp. Immunol. 63:1–7.PubMedGoogle Scholar
  36. 36.
    Oshimi, K., Sumiya, M., Gonda, N., Kano, S., and Takaku, F., 1982, Natural killer cell activity in untreated systemic lupus erythematosus, Ann. Rheum. Dis. 41:417–420.PubMedGoogle Scholar
  37. 37.
    Kaufman, D. B., 1982, Natural killer augmentation in systemic lupus erythematosus via a soluble mediator derived from human lymphocytes, Arth. Rheum. 25:562–567.Google Scholar
  38. 38.
    Tsokos, G. C., Rook, A. H., Djeu, J. Y., and Balow, J. E., 1982, Natural killer cells and interferon responses in patients with systemic lupus erythematosus, Clin. Exp. Immunol. 50:239–245.PubMedGoogle Scholar
  39. 39.
    Penschow, J., and MacKay, I. R., 1980, NK and T cell activity of human blood: Differences according to sex, age, and disease. Ann. Rheum. Dis. 39:82—86.Google Scholar
  40. 40.
    McGarry, R. C., Roder, J. C., and Brunet, D., 1982, Mechanisms of natural killer cell depression in multiple sclerosis, in: NK Cells and Other Natural Effector Cells( R. B. Herberman, ed.), Academic Press, New York, pp. 1219–1225.Google Scholar
  41. 41.
    Uchida, A., Maida, E. M., Lenzhofer, R., and Micksche, M., 1982, Natural killer cell activity in patients with multiple sclerosis: Interferon and plasmapheresis, Immunobiology 160:392–402.PubMedGoogle Scholar
  42. 42.
    Abb, J., Kaudewitz, P., Zander, H., Ziegler, H.-H. L., Dienhardt, F., and Riethmuller, R., 1982, Interferon (IFN) production and natural killer (NK) cell activity in patients with multiple sclerosis: Influence of genetic factors assessed by studies of monozygotic twins, in: NK Cells and Other Natural Effector Cells( R. B. Herberman, ed.), Academic Press, New York, pp. 1233–1240.Google Scholar
  43. 43.
    Hoffman, T., 1980, Natural killer function in systemic lupus erythematosus, Arth. Rheum. 23:30–35.Google Scholar
  44. 44.
    Sibbitt, W. L., Froelich, C. J., and Bankhurst, A. D., 1984, Interferon alpha regulation of lymphocyte function in systemic lupus erythematosus, Clin. Immunol. Immunopathol. 32:70–80.PubMedGoogle Scholar
  45. 45.
    Katz, P., Zaytoun, A. M., Lee, J. H., Panush, R. S., and Longley, S., 1982, Abnormal natural killer cell activity in systemic lupus erythematosus: An intrinsic defect in the lytic event, J. Immunol. 129:1966–1971.PubMedGoogle Scholar
  46. 46.
    Sibbitt, W. L., Mathews, P. M., and Bankhurst, A. D., 1983, Natural killer cell in systemic lupus erythematosus: Defects in effector lytic activity and response to interferon and interferon inducers, J. Clin. Invest. 71:1230–1239.PubMedGoogle Scholar
  47. 47.
    Sibbitt, W. L., Mathews, P. M., and Bankhurst, A. D., 1984, Impaired release of a soluble natural killer cytotoxic factor in systemic lupus erythematosus, Arth. Rheum. 27:1095–1100.Google Scholar
  48. 48.
    Siilverman, S. L., and Cathcart, E. S., 1980, Natural killing in systemic lupus erythematosus inhibiting effects of serum, Clin. Immunol. Immunopathol. 17:219–226.Google Scholar
  49. 49.
    Ytterberg, S. R., and Schnitzer, T. J., 1984, Inhibition of natural killer cell activity by serum from patients with systemic lupus erythematosus: Roles of disease activity and serum interferon, Ann. Rheum. Dis. 43:457–461.PubMedGoogle Scholar
  50. 50.
    Goto, M., Tanimoto, K., and Horiuchi, Y., 1980, Natural cell mediated cytotoxicity in systemic lupus erythematosus, Arth. Rheum. 23:1274–1281.Google Scholar
  51. 51.
    Rook, A. H., Tsokos, G. C., Quinnan, G. V., Balow, J. E., Ramsey, K. M., Stocks, N., Phelan, M. A., And Djeu, J. Y., 1982, Cytotoxic antibodies to natural killer cells in systemic lupus erythematosus, Clin. Immunol. Immunopathol. 24:179–185.PubMedGoogle Scholar
  52. 52.
    Sibbitt, W. L., Gibbs, D. L., Kenny, C., Bankhurst, A. D., Searles, R. P., and Ley, K. D., 1985, Relationship between circulating interferon and anti interferon antibodies and imparied natural killer cell activity in systemic lupus erythematosus, Arth. Rheum. 28:624–629.Google Scholar
  53. 53.
    Strannegard, O., Hermodsson, S., Westberg, G., 1982, Interferon and natural killer cells in systemic lupus erythematosus, Clin. Exp. Immunol. 50:246–252.PubMedGoogle Scholar
  54. 54.
    Preble, O. T., Rothko, K., Klippel, J. H., Friedman, R. M., and Johnston, M. L., 1983, Interferon-induced 2’–5’ adenylate synthetase in vivoand interferon production in vitroby lymphocytes from systemic lupus erythematosus patients with and without cor–relating interferon, J. Exp. Med. 154:2140–2146.Google Scholar
  55. 55.
    Preble, O. T., Black, R. J., Friedman, R. M., Klippel, J. H., and Vilcek, S. R., 1982, Systemic lupus erythematosus: Presence in human serum of an unusual acid labile leukocyte interferon, Science 216:429–431.PubMedGoogle Scholar
  56. 56.
    Ytterberg, S. R., and Schnitzer, T. J., 1982, Serum interferon levels in patients with systemic lupus erythematosus, Arth. Rheum. 25:401–406.Google Scholar
  57. 57.
    Panem, S., Check, I. J., Henriksen, D., and Vilcek, J., 1982, Antibodies to interferon in a patient with system lupus erythematosus, J. Immunol. 129:1–3.PubMedGoogle Scholar
  58. 58.
    Neighbour, P. A., and Grayzel, A. I., 1981, Interferon production in vitroby leukocytes from patients with systemic lupus erythematosus and rheumatoid arthritis, Clin. Exp. Immunol. 45:576–582.PubMedGoogle Scholar
  59. 59.
    Fitzharris, P., Alcocer, J., Stephens, H. A. F., Knight, R. A., and Snaith, M. L., 1982, Insensitivity to interferon of NK cells from patients with systemic lupus erythematosus, Clin. Exp. Immunol. 47:110–118.PubMedGoogle Scholar
  60. 60.
    Hooks, J. J., Moutsopoulos, H. M., and Geis, S. A., 1979, Immune interferon in the circulation of patient with autoimmune disease, N. Engl. J. Med. 301:5–8.PubMedGoogle Scholar
  61. 61.
    Talal, N., 1983, A clinician and a scientist look at acquired immune-deficiency syndrome (AIDS), Immunol. Today 4:182–183.Google Scholar
  62. 62.
    Rook, A. H., Masur, H., Lane, H. C., Frederick, W., Kasahara, T., Mucher, A. M., Djeu, J. Y., Manischewitz J. F., Jackson, L., Fauci, A. S., and Quinnan, G. V., 1983, Interleukin-2 enhances the depressed natural killer and cytomegalovirus-specific cytotoxic activities of lymphocytes from patients with the acquired immunodeficiency syndrome, J. Clin. Invest. 72:398–403.PubMedGoogle Scholar
  63. 63.
    Tsokos, G. C., Smith, P. L., Christian, C. B., Lipnick, R. N., Balow, J. E., and Djeu, J. Y., 1985, Interleukin-2 restores the depressed allogenic cell-mediated lympholysis and natural killer cell activity in patients with systemic lupus erythematosus, Clin. Immunol. Immunopathol. 34:379–386.PubMedGoogle Scholar
  64. 64.
    Linker-Israel, M., Bakke, A., Kitridou, R. C., Gendler, S., Gillis, S., and Horwitz, D. A., 1983, Defective production of interleukin 1 and interleukin 2 in patients with systemic erythematosus (SLE), J. Immunol. 130:2651–2655.Google Scholar
  65. 65.
    Alcocer-Varela, J, and Alarcon-Segovia, D., 1982, Decreased production of and response to interleukin 2 by cultured lymphocytes from patients with systemic lupus erythematosus, J. Clin. Invest. 69:1388–1392.PubMedGoogle Scholar
  66. 66.
    Whicher, J. T., Gilbert, A. M., Westacott, C., Hutton, C., and Dieppe, P. A., 1986, Defective production of leukocytic endogenous mediator (interleukin-1) by peripheral blood leukocytes of patients with systemic clerosis, systemic lupus erythematosus, rheumatoid arthritis, and mixed connective tissue disease, Clin. Exp. Immunol. 65:80–89.PubMedGoogle Scholar
  67. 67.
    Hooks, J. J., Moutsoupoulos, H. M., and Notkins, A. L., 1982, Circulating interferon in human autoimmune disease, Texas Rep. Biol. Med. 41:164–168.Google Scholar
  68. 68.
    Neighbour, P. A., Reinitz, E., Grayzel, A. I., Miller, A. E., and Bloom, B. K., 1982, Studies of human NK cell functions in chronic diseases, in: NK Cells and Other Natural Effector Cells( R. B. Herberman, ed.), Academic Press, New York, pp. 1241–1248.Google Scholar
  69. 69.
    Reinitz, E., Neighbour, P. A., and Grayzel, A. I., 1982, Natural killer cell activity of mononuclear cells from rheumatoid patients measured by a conjugate-binding cytotoxicity assay, Arth. Rheum.25: 1440–1444.Google Scholar
  70. 70.
    Doblong, J. H., Forre, O., Krien, T. K., Egeland, T., and Degre, M., 1982, Natural killer (NK) cell activity of peripheral blood synovial fluid, and synovial tissue lympho¬cytes from patients with rheumatoid arthritis and juvenile rheumatoid arthritis., Ann. Rheum. Dis. 41:490–494.Google Scholar
  71. 71.
    Pedersen, B. K., Beyer, J. K., Klarlund, J., and Clemmensen, I. H., 1985, Baseline and interferon-enhanced natural killer cell activity in rheumatoid arthritis, Acta. Pathol. Microbiol. Immunol. Scand. 93:79–84.Google Scholar
  72. 72.
    Kibler, R., Poulos, B. T., Stanfield, A. B., and Parsons, J. L., 1986, Cytotoxic activity of enriched large granular lymphocyte populations in rheumatoid arthritis, Clin. Exp. Rheumatol. 4:17–24.PubMedGoogle Scholar
  73. 73.
    McChesney, M. B., and Bankhurst, A. D., 1986, Cytotoxic mechanisms in vitroagainst Epstein Barr virus infected lymphoblastoid cell lines in rheumatoid arthritis, Ann. Rheum. Dis. 45:546–552.PubMedGoogle Scholar
  74. 74.
    Fantini, F., Valenti, F., Mercuriali, F., Marin, F., and Panajotopoulos, N., 1986, Impaired natural killing activity in patients with rheumatoid arthritis. Clinical characteristics and a study of defective mechanisms, Boll. 1st. Sieroter Milan 65:40–46.Google Scholar
  75. 75.
    Goto, M., and Zvaifler, N. J., 1985, Impaired killer cell generation in the autologous mixed leukocyte reaction by rheumatoid arthritis lymphocytes, Arth. Rheum. 28:731–741.Google Scholar
  76. 76.
    Russell, A. S., and Miller, C., 1984, The activity of natural killer cells in patients with rheumatoid arthritis. I. The effect of drugs used in vivo, Clin. Exp. Rheumatol. 2:227–229.PubMedGoogle Scholar
  77. 77.
    Combe, B., Pope., Darnell, B., and Talal, N., 1984, Modulation of natural killer cell activity in the rheumatoid joint and peripheral blood, Scand J. Immunol. 20:551–558.Google Scholar
  78. 78.
    Silver, R. M., Redelman, D., Zvaifler, N. J., and Naides, S., 1982, Studies of rheumatoid synovial fluid lymphocytes. I. Evidence for activated natural killer (NK) like cells, J.Immunol. 128:1758–1763.PubMedGoogle Scholar
  79. 79.
    Silver, R. M., 1986, Studies of rheumatoid synovial fluid lymphocytes. III. Phenotypic and functional analysis of natural killer cells, Clin. Immunol. Immunopathol. 39:159–167.PubMedGoogle Scholar
  80. 80.
    Goto, M., and Zvaifler, N. J., 1985, Characterization of the natural killer like lymphocytes in rheumatoid synovial fluid, J. Immunol. 134:1483–1486.PubMedGoogle Scholar
  81. 81.
    Combe, B., Pope, R., Darnell, B., Sany, J., and Talal, N., 1985, Regulation of natural killer activity by adherent cells in synovial rheumatoid medium, Rev. Rheum. Mai. Osteoartic. 52:385–390.Google Scholar
  82. 82.
    Fox, R. I., Fong, S., Tsoukas, C., and Vaughan, J. H., 1984, Characterization of recirculating lymphocytes in rheumatoid arthritis patients: Selective deficiency of natural killer cells in thoracic duct lymph, J. Immunol. 132:2883–2887.PubMedGoogle Scholar
  83. 83.
    Combe, B., Pope, R. M., Fishback, M., Darnell, B., Baron, S., and Talal, N., 1985, Interleukin 2 in rheumatoid arthritis: Production of and response to interleukin 2 in rheumatoid synovial fluid, synovial tissue, and peripheral blood, Clin. Exp. Immunol. 59:520–528.PubMedGoogle Scholar
  84. 84.
    Fontana, A., Hengartner, H., Weber, E., Fehr, K., Grob, P. J., and Cohen, G., 1982, Interleukin 1 acitivty in the synovial fluid of patients with rheumatoid arthritis, Rheumatol. Int. 2:49–53.PubMedGoogle Scholar
  85. 85.
    Shore, A., Jaglal, S., and Keystone, E. C., 1986, Enhanced interleukin 1 generation by monocytes in vitro is temporally linked to an early event in the onset or exacerbation of rheumatoid arthritis. Clin. Exp. Immunol. 65:293–302.PubMedGoogle Scholar
  86. 86.
    Combe, B., Pope, R., Darnell, B., Kincaid, W., and Talal, N., 1984, Regulation of natural killer cell activity by macrophages in the rheumatoid joint and peripheral blood, J. Immunol. 133:709–713.PubMedGoogle Scholar
  87. 87.
    Koch, B., Locher, P., Burmester, G. R., Mohr, W., and Kalden J. R., 1984, The tissue architecture of synovial membranes in inflammatory and non inflammatory joint diseases. II. The localization of mononuclear cells as detected by monoclonal antibodies directed against T lymphocyte subsets and natural killer cells, Rheumatol. Int. 4:79–85.PubMedGoogle Scholar
  88. 88.
    Grimm, E. A., Mazumder, A., Zhang, H. Z., and Rosenberg, S. A., 1982, Lymphokine activated killer cell phenomenon. Lysis of natural killer resistant fresh solid tumor cells by IL2 activated autologous human peripheral blood lymphocytes, J. Exp. Med. 155:1823–1827.PubMedGoogle Scholar
  89. 89.
    Aichinger, G., Fill, H., and Wick, G., 1985, In situimmune complexes, lymphocyte subpopulations, and HLA-DR-positive epithelial cells in Hashimoto’s thyroiditis, Lab. Invest. 52:132–140.Google Scholar
  90. 90.
    Del Prete, G. F., Maggi, E., Mariotti, S., Tiri, A., Vercelli, D., Parronchi, P., Macchia, D., Pinchera, A., Ricci, M., and Romagnani, S., 1986, Cytolytic T lymphocytes with natural killer activity in thyroid infiltrate of patients with Hashimoto’s thyroiditis: Analysis at clonal level, J. Clin. Endocrinol. Metab. 62:52–57.PubMedGoogle Scholar
  91. 91.
    Seybold, D., Ryan, E. A., and Wall, J. R., 1981, Natural cytotoxicity of blood mononuclear cells from normal subjects and patients with Hashimoto’s thyroiditis against normal thyroid cells, J. Clin. Lab. Immunol. 6:241–244.PubMedGoogle Scholar
  92. 92.
    Chow, A., Baur, R. J., Schleusener, H., and Wall, J. R., 1983, Natural cytotoxicity of peripheral blood leukocytes from normal subjects and patients with Hashimoto’s thyroiditis against human adult and fetal thyroid cells, Life Sci. 32:67–75.PubMedGoogle Scholar
  93. 93.
    Sack, J., Baker, J. R., Weetman, A. P., Wartofsky, L., and Burman, K. D., 1986, Killer cell activity and antibody dependent cell mediated cytotoxicity are normal in Hashimoto’s disease, J. Clin. Endocrinol. Metab. 62:1059–1064.PubMedGoogle Scholar
  94. 94.
    Santoli, D., and Koprowski, H., 1979, Mechanisms of activation of human natural killer cells against tumor and virus infected cells, Immunol. Rev. 44:125–163.PubMedGoogle Scholar
  95. 95.
    Trinchieri, G., Granato, D., and Perussia, B., 1981, Interferon induced resistance of fibroblasts to cytolysis mediated by natural killer cells: Specificity and mechanism, J. Immunol. 126:335–340.PubMedGoogle Scholar
  96. 96.
    Nair, P. N., and Schwartz, S. A., 1981, Suppression of normal killer activity and anti-body dependent cellular cytotoxicity by cultured human lymphocytes, J. Immunol. 126:2221–2229.PubMedGoogle Scholar
  97. 97.
    Hutteroth, T. H., Poralla, T., and Meyerzum Buschenfelde, K.-H., 1981, Spontaneous cell-mediated (SCMC) and antibody-dependent cellular cytotoxicity (ADCC) in patients with acute and chronic active hepatitis, Klin. Wochensch. 59:699–706.Google Scholar
  98. 98.
    Serdengecti, S., Jones, D. B., Holdstock, G., and Wright, R., 1981, Natural killer activity in patients with biopsy-proven liver disease, Clin. Exp. Immunol. 45:361–364.PubMedGoogle Scholar
  99. 99.
    Feldman, J.-L., Becker, M. J., Moutsopoulos, H., Fye, K., Blackman, M., Epstein, W. V., and Talal, N., 1976, Antibody dependent cell mediated cytotoxicity in selected autoimmune disease, J. Clin. Invest. 58:173–179.Google Scholar
  100. 100.
    Michalkiewicz, J., 1978, Immunological characteristics of lymphocytes in snyovial fluid and peripheral blood in patients with rheumatoid arthritis, Arch. Immunol. Ther. Exp. 26:801–805.Google Scholar
  101. 101.
    Calder, E. A., Penhale, W. J., McLeman, D., Barnes, E. W., and Irvine, W. J., 1973, Lymphocyte dependent antibody-mediated cytotoxicity in Hashimoto’s thyroiditis, Clin. Exp. Immunol. 14:153–158.PubMedGoogle Scholar
  102. 102.
    Wasserman, T., Von Stedingle, L.-V., Perlmann, P., and Jonsson, J., 1974, Antibody- induced in vitrolymphocyte cytotoxicity in Hashimoto’s thyroiditis, Int. Arch. Allergy 47:473–482.PubMedGoogle Scholar
  103. 103.
    Hauser, S. L., Ault, K. A., Levin, M. J., Garavoy, M. R., and Weiner, H. L., 1981, Natural killer cell activity in multiple sclerosis, J. Immunol. 127:1114–1117.PubMedGoogle Scholar
  104. 104.
    Merrill, J. E., Scott, A., Myers, L., and Ellison, G., 1982, Cytotoxic activity of peripheral blood and cerebrospinal fluid lymphocytes from patients with multiple sclerosis and other neurological diseases. J. Neuroimmunol. 3:123–138.PubMedGoogle Scholar
  105. 105.
    Wang, P. W., Hiromatsu, Y., Laryea, E., Wosu, L., How, J., and Wall, J. R., 1986, Immunologically mediated cytotoxicity against human eye muscle cells in Graves opthalmopathy, J. Clin. Endocrinol. Metab. 63:316–322.PubMedGoogle Scholar
  106. 106.
    Auer, I. O., and Ziemer, E. 1980, Immune status in Crohn’s disease: In vitroantibody dependent cell mediated cytotoxicity in peripheral blood, Klin. Wochenschr. 58:779–787.PubMedGoogle Scholar
  107. 107.
    Koren, H. S., Amos, D. B., and Buckley, R. H., 1978, Natural Killing in immunodeficient patients, J. Immunol. 120:796–799.PubMedGoogle Scholar
  108. 108.
    Lipinski, M., Virelizier, H., Turza, T., and Giriscelli, C., 1980, Natural killer and killer cell activities in patients with primary immunodeficiencies or defects in immune interferon production, Eur. J. Immunol. 10:246–249.PubMedGoogle Scholar
  109. 109.
    Iwatani, Y., Amino, N., Kabutomoni, O., Mori H., Tomaki, H., Motoi, S., Izumiguchi, Y., and Miyai, K., 1984, Decrease of peripheral large granular lymphocytes in Graves disease, Clin. Exp. Immunol. 55:239–244.PubMedGoogle Scholar
  110. 110.
    Shy, M. E., Gabel, C. A., Vietorisz, E. C., and Latov, N., 1986, Characterization of oligosaccharides that bind to human anti MAG antibodies and the mouse monoclonal antibody HNK-1, J. Neuroimmunol. 12:291–298.PubMedGoogle Scholar
  111. 111.
    Schuller-Petrovic, S., Gebhart, W., Lassmann, H., Rumpold, H., and Kraft, D., 1983, A shared antigenic determinant between natural killer cells and nervous tissue, Nature 306:179–181.PubMedGoogle Scholar
  112. 112.
    Lipinski, M., Braham, K., Caillaud, J.-M., Carlo, C., and Tursz, T., 1982, HNK-1 antibody detects an antigen expressed on neuroectodermal cells, J. Exp. Med. 158:1775–1780.Google Scholar
  113. 113.
    McGarry, R. C., Helfand, S. L., Quarles, R. H., and Rocter, J. C., 1983, Recognition of myelin associated glycoprotein by the monoclonal antibody HNK-1, Nature 306:376–378.PubMedGoogle Scholar
  114. 114.
    Tischler, A. S., Mobtaker, H., Mann, K., Nunnemachei, G., Jason, W. J. Dayal, Y., Delellis, R. A., Adelman, L., and Woffe H. J., 1986, Anti-lymphocyte antibody Leu7 (HNK-1) recognizes a constituent of neuroendocrine granule matrix,J. Histochem. Cytochem. 34:1213–1216.PubMedGoogle Scholar
  115. 115.
    Murray, N., and Steck, A. J., 1984, Indication of a possible role in a demyelinating neuropathy for an antigen shared between myelin and NK cells, Lancet 1:711–713.PubMedGoogle Scholar
  116. 116.
    Strom, T. B., Lane, M-A., and Heldeman, J. H., 1978, Immunoregulation by hormones and neurotransmitters, Proc. VII Int. Cong. Nephrol. 1978:585–589.Google Scholar
  117. 117.
    Melmon, K. L., Rocklin, R. E., and Rosenkranz, R. P., 1981, Autocoids as modulators of the inflammatory and immune response, Am. J. Med. 71:100–106.PubMedGoogle Scholar
  118. 118.
    Foris, G., Gyimesi, E., and Komaromi, I., 1985, The mechanism of antibody dependent cellular cytotoxicity stimulation by somatostatin in rat peritoneal macrophages, Cell. Immunol. 90:217–225.PubMedGoogle Scholar
  119. 119.
    Van Dyke, C., Stesin, A., Jones, R., Chuntharapai, A., and Seaman, W., 1986, Cocaine increases natural killer cell activity, J. Clin. Invest. 77:1387–1390.PubMedGoogle Scholar
  120. 120.
    Tonnesen, E., Tonneseu, J., and Christensen, N. J., 1984, Augmentation of cytotoxicity by natural killer (NK) cells after adrenaline administration in man, Acta Pathol. Microbiol. Immunol. Scand. 92:81–83.Google Scholar
  121. 121.
    Crook, R. B., Farber, M. B., and Prusiner, S. B., 1984, Hormones and neurotransmitters control cyclic AMP metabolism in cheroid plexus epithelial cells, J. Neurochem 42:340–350.PubMedGoogle Scholar
  122. 122.
    Hellstrand, K., Hermodsson, S., and Strannegard, O., 1985, Evidence for a beta-adrenoceptor-mediated regulation of human natural killer cells, J. Immunol. 134:4095–4099.PubMedGoogle Scholar
  123. 123.
    Panula, P., Yang, H. Y. T., and Costa, E., 1984, Histamine containing neurons in the rat hypothalamus, Proc. Natl. Acad. Sci. USA 81:1572–1575.Google Scholar
  124. 124.
    Parker, C. W., 1984, Mediators: Release and function, in: Fundamental Immunology( W. Paul, ed.), Raven Press, New York, pp. 717–747.Google Scholar
  125. 125.
    Lithicum, D. S., and Frelinger, J. A., 1982, Acute autoimmune encephalomyelitis in mice. II. Susceptibility is controlled by the combination of H2 and histamine sensitization genes, J. Exp. Med. 155:31–40.Google Scholar
  126. 126.
    Reches, A., Ovadia, H., and Abramsky, O., 1985, Neurotransmitter-depleting agents inhibit the development of experimental allergic encephalomyelitis (EAE), Neurology 35:299–303.Google Scholar
  127. 127.
    Shearer, G. M., Melmon, K. K., Weinstein, Y., and Sela, M., 1982, Regulation of antibody response by cells expressing histamine receptors, J. Exp. Med. 136:1302–1307.Google Scholar
  128. 128.
    Ballet, J. J., and Merter, E., 1976, The separation and reactivity in vitro of a subpopulation of human lymphocytes which bind histamine: Correlation of histamine reactivity with cellular maturation, Cell. Immunol. 24:250–269.PubMedGoogle Scholar
  129. 129.
    Schwartz, A., Sutton, S. L., Askenase, P. W., and Gershon, R. K., 1981, Histamine inhibition of conconavalin A—induced suppressor T cell activation, Cell. Immunol. 60:426–439.PubMedGoogle Scholar
  130. 130.
    Krug, U., Krug, F., and Cuatrecasas, P., 1972, Emergence of insulin receptors on human lymphocytes during in vitro transformation, Proc. Natl. Acad. Sci. USA 69:2604–2608.PubMedGoogle Scholar
  131. 131.
    Gelfand, E. W., Ipp, M. M., and Riordan, J. R., 1982, Insulin modulation of antibody dependent cytotoxicity and the detection of antireceptor antibodies, J. Lab. Clin. Med. 99:39–45.PubMedGoogle Scholar
  132. 132.
    Lang, I., Torok, K., Gergely, P., Kekam, K., and Petranyl, G., 1981, Effect of histamine receptor blocking on human antibody-dependent cell mediated cytotoxicity, Scand. J. Immunol. 12:361–366.Google Scholar
  133. 133.
    Griswold, D. E., Alessi, S., Badger, A. M., Poste, G., and Hanna, N., 1984, Inhibition of T suppressor cell expression by histamine type 2 (H2) receptor antagonists, J. Immunol. 132:3054–3057.PubMedGoogle Scholar
  134. 134.
    Lang, I., Gergely, P., and Petranyi, G. Y., 1981, Effect of histamine receptor blocking on human spontaneous lymphocyte mediated cytotoxicity, Scand. J. Immunol. 14:573–576.PubMedGoogle Scholar
  135. 135.
    Nair, M. P. N., and Schwartz, S. A., 1983, Effect of histamine and histamine antagonists on natural and antibody dependent cellular cytotoxicity of human lymphocytes in vitro, Cell. Immunol. 81:45–60.PubMedGoogle Scholar
  136. 136.
    Hellstrand, K., and Hermodsson, S., 1986, Histamine H2 receptor mediated regulation of human natural killer cell activity, J. Immunol. 137:656–660.PubMedGoogle Scholar
  137. 137.
    Droge, W., Schmidt, H., Nick, S., and Sonsky, B., 1986, Histamine augments interleukin 2 production and the activation of cytotoxic T lymphocytes, Immunopharmacology 11:1–6.PubMedGoogle Scholar
  138. 138.
    Nair, M. P. N., Cilik, J. M., and Schwartz, S. A., 1986, Histamine induced suppressor factor inhibition of NK cells: Reversal with interferon and interleukin 2, J. Immunol. 136:2456–2462.PubMedGoogle Scholar
  139. 139.
    Carlsson, R., Dohlsten, M., and Sjogren, H. O., 1985, Histamine modulates the production of interferon and interleukin 2 by mitogen activated human monomuclear blood cells, Cell. Immunol. 96:104–112.PubMedGoogle Scholar
  140. 140.
    Flodgren, P., and Sjogren, H. O., 1985, Influence in vitroon NK and K cell activities by cimetidine and indomethacine with and without simultaneous exposure to interferon, Cancer Immunol. Immunotherapy 19:28–34.Google Scholar
  141. 141.
    Smith, E. M., and Blalock, J. E., 1981, Human lymphocyte production of corticotropin and endorphin-like substances: Association with leukocyte interferon, Proc. Natl. Acad. Sci. USA 78:7530–7534.PubMedGoogle Scholar
  142. 142.
    Blalock, J. E., and Smith, E. M., 1985, A complete regulatory loop between the immune and neuroendocrine systems, Fed. Proc. 44:108–111.PubMedGoogle Scholar
  143. 143.
    Hall, N. R., McGillis, J. P., Spangels, B. L., Healy, D. L., and Goldstein, A. L., 1985, Immunomodulatory peptides and the central nervous system, Springer Sem. Immunopathol. 8:153–164.Google Scholar
  144. 144.
    Kay, N., Allen, J., and Morley, J. E., 1984, Endorphins stimulate normal human peripheral blood lymphocyte natural killer activity, Life Sci. 35:53–59.PubMedGoogle Scholar
  145. 145.
    Froelich, C. J., and Bankhurst, A. D., 1984, The effect of beta endorphin on natural cytotoxicity and antibody dependent cellular cytotoxicity, Life Sci. 36:261–265.Google Scholar
  146. 146.
    Faith, R. E., Liang, H. J., Murgo, A. J., and Plotnikoff, N. P., 1984, Neuroimmuno-modulation with enkephalins: Enhancement of human natural killer (NK) cell activity in vitro, Clin. Immunol. Immunopathol. 31:412–418.PubMedGoogle Scholar
  147. 147.
    Wybran, J., 1984, Enkephalins and endorphins as modifiers of the immune system: Present and future, Fed. Proc. 44:92–99.Google Scholar
  148. 148.
    Mandler, R. N., Biddison, W. E., Mandler, R., and Senate, S. A., 1986, Beta endorphin augments the cytolytic activity and interferon production of natural killer cells, J. Immunol. 136:934–939.PubMedGoogle Scholar
  149. 149.
    Wybran, J., 1985, Enkephalins and endorphins: Activation molecules for the immune system and natural killer activity, Neuropeptides 5:371–374.PubMedGoogle Scholar
  150. 150.
    Plotnikoff, N. P., Murgo, A. J., Miller, G. C., Corder, C. N., and Faith, R. E., 1985, Enkephalins: Immunomodulators, Fed. Proc. 44:118–122.PubMedGoogle Scholar
  151. 151.
    Kalland, T., 1986, Interleukin 3 is a major negative regulator of the generation of natural killer cells from bone marrow precursors, J. Immunol. 137:2268–2271.PubMedGoogle Scholar
  152. 152.
    Birchenall-Sparks, M. C., Farrar, W. L., Rennick, D., Kiliau, P. L., and Roscetti, F. W., 1986, Regulation of expression of the interleuken 2 receptor on hematopoietic cells by interleukin 3, Science 233:455–458.PubMedGoogle Scholar
  153. 153.
    Bernstein, H. A., 1986, Is prostaglandin E2 involved in the pathogenesis of fever: Effects of interleukin 1 on the release of prostaglandins, Yale J. Biol. Med. 59:151–158.Google Scholar
  154. 154.
    Frei, K., Bodmer, S., Schwerdel, C., and Fontana, A., 1985, Astrocytes of the brain synthesize interleukin 3 like factors, J. Immunol. 135:4044–4047.PubMedGoogle Scholar
  155. 155.
    Giulian, D., Baker, T. J., Shih, L. C. N., and Lachman, L., 1986, Interleukin 1 of the central nervous system is produced by ameboid microglia, J. Exp. Med. 164:594–604.PubMedGoogle Scholar
  156. 156.
    Degre, M., Dahl, H., Vandvik, B., 1981, Interferon in the serum and cerebrospinal fluid of patients with multiple sclerosis and other neurological disorders, Acta Neurol. Scand. 53:152–160.Google Scholar
  157. 157.
    Santoli, D., Hall, W., Kastrukoff, L., Lisak, K. P., Perussia, B., Trinchieri, G., and Koprowski, H., 1981, Cytotoxic activity and interferon production by lymphocytes from patients with multiple sclerosis, J. Immunol. 126:1274–1278.PubMedGoogle Scholar
  158. 158.
    Kaudewitz, P., Sander, H., Abb, J., Siegler-Heitbrock, H. W., and Riethmuller, G., 1983, Genetic influence on natural cytotoxicity and interferon production in multiple sclerosis studies in monozygotic discordant twins, Hum. Immunol. 7:51–58.PubMedGoogle Scholar
  159. 159.
    Neighbour, P. A., and Bloom, B. R., 1979, Absence of virus–induced lymphocyte suppression and interferon production in multiple sclerosis, Proc. Natl. Acad. Sci. USA 76:476–480.PubMedGoogle Scholar
  160. 160.
    Neighbour, P. A., Miller, A. E., and Bloom, B. R., 1981, Interferon responses of leukocytes in multiple sclerosis, Neurology 31:561.PubMedGoogle Scholar
  161. 161.
    Benczur, M., Petranyi, G. G., Palffy, G., Varga, M., Talas, M., Kotsy, B., Foldes, I., and Hollan, S. R., 1980, Dysfunction of natural killer cells in multiple sclerosis: A possible pathogenic mechanism, Clin. Exp. Immunol. 39:657–662.PubMedGoogle Scholar
  162. 162.
    Gyodi, E., Benczur, M., Palffy, G., Talas, M., Petranyi, G., Foldes, I., and Hollan, S. R., 1982, Association between HLA B7, DR2, and dysfunction of natural and antibody-mediated cytotoxicity without connection with the deficient interferon production in multiple sclerosis, Hum. Immunol. 4:209–217.PubMedGoogle Scholar
  163. 163.
    Salonen, R., Ilonen, J., Reuanen, M., and Salmi, A., 1982, Defective production of interferon α associated with HLA DW2 antigen in stable multiple sclerosis, J. Neurol. Sci. 55:197–206.PubMedGoogle Scholar
  164. 164.
    Haehr, S., Moller-Larsen, A., and Pedersen, E., 1983, Immunological parameters in multiple sclerosis patients with special reference to the herpes virus group, Clin. Exp. Immunol. 51:197–206.Google Scholar
  165. 165.
    Vervliet, G., and Schandene, L., 1985, In vitro correction of the interleukin-2 and interferon gamma defect in multiple sclerosis, Clin. Exp. Immunol. 61:556–561.PubMedGoogle Scholar
  166. 166.
    Hirsch, R., Panitch, H. S., and Johnson, K. P., 1985, Lymphocytes from multiple sclerosis patients produce elevated levels of gamma interferon in vitro, J. Clin. Immunol. 5:386–389.PubMedGoogle Scholar
  167. 167.
    Neighbour, P. A., 1984, Studies of interferon production and natural killing by lymphocytes from multiple sclerosis patients, Ann. N.Y. Acad. Sci. 436:181–191.PubMedGoogle Scholar
  168. 168.
    Jacobs, L., O’Malley, J., Freeman, A., and Ekes, R., 1981, Intrathecal interferon reduces exacerbations in multiple sclerosis, Science 214:1026–1028.PubMedGoogle Scholar
  169. 169.
    Jacobs, L., O’Malley, J., Freeman, A., Murawski, J., and Ekes, R., 1982, Intrathecal interferon in multiple sclerosis, Arch. Neurol. 39:609–615.PubMedGoogle Scholar
  170. 170.
    Albala, M. M., Davignon, D., Fast, L. D., and Clark, D. D., 1985, Normal T cell subsets and lymphocyte activity in multiple sclerosis, Clin. Exp. Immunol. 61:542–547.PubMedGoogle Scholar
  171. 171.
    Benczur, M., Gyodi, E., Petranyi, G., Hollan, S. R., Palffy, G., Talas, M., Stoger, I., and Foldes, I. 1982, Impaired natural killer cell function in multiple sclerosis and association with the HLA system, in: NK Cells and Other Natural Effector Cells( R. B. Herberman, ed.), Academic Press, New York, pp. 1227–1232.Google Scholar
  172. 172.
    Merrill, J. E., Jondal, M., Seeley, J., Ullberg, M., and Siden, A., 1981, Decreased NK killing in patients with multiple sclerosis: An analysis on the level of the single effector cell in peripheral blood and cerebrospinal fluid in relation to disease activity, Clin. Exp. Immunol. 47:419–430.Google Scholar
  173. 173.
    Merrill, J. E., Gerner, R. H., Myers, L. W., and Ellison, G. W., 1983, Regulation of natural killer cell cytotoxicity by prostaglandin E in the peripheral blood and cerebrospinal fluid of patients with multiple sclerosis and other neurological diseases. I. Association between amount of prostaglandin produced, natural killer, and endogenous interferon, J. Neuroimmunol. 4:223–237.PubMedGoogle Scholar
  174. 174.
    Merrill, J. E., Myers, L. W., and Ellison, G. W., 1983, Regulation of natural killer cell cytotoxicity by prostaglandin E in the peripheral blood and cerebrospinal fluid of patients with multiple sclerosis and other neurological diseases. II. Effect of exogenous PGE1 on spontaneous and interferon-induced natural killer, J. Neuroimmunol. 4:239–251.PubMedGoogle Scholar
  175. 175.
    Merrill, J. E., Gerner, R. H., Myers, L. W., and Ellison G. W., 1983, Regulation of NK activity and I FN production by PGE in the peripheral blood and cerebrospinal fluid of patients with multiple sclerosis and other neurological diseases, in: Intercellular Communication in Leukocyte Function( J. W. Parker and R. L. O’Brien, eds.), Wiley, New York, pp. 79–84.Google Scholar
  176. 176.
    Neighbour, P. A., Grayzel, A. I., and Miller, A. E., 1982, Endogenous and interferon-augmented natural killer cell activity of human peripheral blood mononuclear cells in vitro. Studies of patients with multiple sclerosis, systemic lupus erythematosus, or rheumatoid arthritis, Clin. Exp. Immunol.49: 11–21.PubMedGoogle Scholar
  177. 177.
    Hirsch, R. L., and Johnson, K. P., 1985, The effect of recombinant alpha-2 interferon on defective natural killer cell activity in multiple sclerosis, Neurology 35:597–600.PubMedGoogle Scholar
  178. 178.
    Heltberg, A., Kalland, T., Kallen, B., and Nilsson, O., 1985, A study of some immunological variables in twins discordant for multiple sclerosis, Eur. Neurol. 24:361–373.PubMedGoogle Scholar
  179. 179.
    Oger, J., Kastrukoff, L., O’Gorman, M., and Paty, D. W., 1986, Progressive multiple sclerosis: Abnormal immuno functions in vitroand aberrant correlation with enumeration of lymphocyte subpopulations, J. Neuroimmunol. 12:37–48.PubMedGoogle Scholar
  180. 180.
    Merrill, J. E., Ellison, G. W., and Myers, L. W., 1984, Cytotoxic activity of peripheral blood and cerebrospinal fluid lymphocytes from patients with multiple sclerosis and other neurological diseases: Analysis at the single cell level of the relationship of cytotoxic effectors and interferon producing cells, Clin. Immunol. Immunopathol. 31:390–402.PubMedGoogle Scholar
  181. 181.
    Abb, J., Zander, H., Abb, H., Albert, E., and Diehnardt, F., 1983, Associating human leukocyte low responsiveness to inducers of interferon alpha with HLA–DR2, Immunology 49:239–244.PubMedGoogle Scholar
  182. 182.
    Zander, H., Abb, J., Kaudewitz, P., and Riethmuller, G., 1982, Natural killing activity and interferon production in multiple sclerosis, Lancet 1:280–283.PubMedGoogle Scholar
  183. 183.
    Hirsch, R. L., and Johnson, K. P., 1985, Natural killer cell activity in multiple sclerosis patients treated with recombinant interferon 2, Clin Immunol. Immunopathol. 37:236–244.PubMedGoogle Scholar
  184. 184.
    Breard, J., Reinherz, E. L., O’Brien, C., and Schlossman, S. F., 1981, Delineation of an effector population responsible for natural killing and antibody cellular cytotoxicity in man, Clin. Immunol. Immunopathol. 18:145–150.PubMedGoogle Scholar
  185. 185.
    Rumpold, H., Kraft, D., Obexer, G., Radaszkiewicz, T., Majdic, O., Bettelheim, P., Knapp, W., and Bock, G., 1983, Phenotypes of human large granular lymphocytes as defined by monoclonal antibodies. Immunobiology 164:51–62.PubMedGoogle Scholar
  186. 186.
    Gastl, G., Niederwieser, D., Marth, C., Huber, H., Egg, D., Schuler, G., Margreiter, R., Braunsteiner, H., and Huber, C., 1984, Human large granular lymphocytes and their relationship to natural killer cell activity in various disease states, Blood 64:288–295.PubMedGoogle Scholar
  187. 187.
    Abo, T., Cooper, M. D., and Balch, C. M. 1982, Characterization of HNK-1+ (Leu 7) human lymphocytes. I. Two distinct phenotypes of human NK cells with different cytotoxic capability, J. Immunol. 129:1752–1757.PubMedGoogle Scholar
  188. 188.
    Tilden, A. B., Abo, T., and Balch, C. M., 1983, Suppressor cell function of human granular lymphocytes identified by the HNK-1 (Leu 7) monoclonal antibody, J. Immunol. 130:1171–1175.PubMedGoogle Scholar
  189. 189.
    Perussia, B., Fanning, V., Trinchieri, G., 1983, A Human NK and K cell subset shares with cytotoxic T cells expression of the antigen recognized by antibody OKT8, J. Immunol 131:223–231.PubMedGoogle Scholar
  190. 190.
    Tanaka, M., Sato, S., and Miyatake, T., 1985, Human peripheral lymphocytes defined by anti-myelin associated glycoprotein antiserum in healthy individuals and in patients with multiple sclerosis, Acta Neurol. Scand. 71:278–283.PubMedGoogle Scholar
  191. 191.
    Johnson, D., Sato, S., Quarles, R. H., Inuzuka, T., Brady, R. O., and Tourtellotte, W. W., 1986, Quantitation of the myelin associated glycoprotein in human nervous tissue from controls and multiple sclerosis patients, J. Neurochem. 46:1086–1093.PubMedGoogle Scholar
  192. 192.
    Rola-Plesczynski, M., Abernathy, M., Vincent, M. M., Hansen, S. A., and Bellanti, J. A., 1976, Lymphocyte mediated cytotoxicity to viruses in patients with multiple sclerosis: Presence of blocking factor, Clin. Immunol. Immunopathol. 5:165–172.Google Scholar
  193. 193.
    Rauch, H. C., Montgomery, I. N., and Kaplan, J., 1985, Natural killer cell activity in multiple sclerosis and myasthenia gravis, Immunol. Invest. 14:427–434.PubMedGoogle Scholar
  194. 194.
    Margaretten, N. C., and Warren, R. P., 1986, Reduced natural killer cell activity and OKT4/OKT8 ratio in epileptic patients, Immunol. Invest. 15:159–167.PubMedGoogle Scholar
  195. 195.
    Bartfeld, H., Dharm, C., Donnenfeld, H., Jashnani, L., Carp, R., Kascsak, R., Vilcek, J., Rapport, H., and Wallenstein, S., 1982, Immunological profile of amyotrophic lateral sclerosis responses to viral and CNS antigens, Clin. Exp. Immunol. 48:137–147.PubMedGoogle Scholar
  196. 196.
    Salmi, A., Lynd, G., Ziola, B., and Reunanen, M., 1986, Circulating immune complexes in patients with subacute sclerosing panencephalitis, Clin. Immunol. Immunopathol. 41:16–25.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Jean E. Merrill
    • 1
  1. 1.Department of NeurologyUCLA School of MedicineLos AngelesUSA

Personalised recommendations