The Relativistic Effective Core Potential Method

  • Odd Gropen

Abstract

Even today, in spite of the development of fast computers and new efficient methods, the complexity of molecular calculations is rapidly increasing with the number of electrons. Quantum mechanical calculations on molecules containing first- and second-row atoms are now a routine task. The third-row atoms are certainly more complicated, owing to their larger size and more complicated d-orbitals. But Siegbahn and co-workers(1) have shown that these compounds can now be handled in an ordinary way. For compounds containing fourth-row elements, however, quantitative calculations are hard to get at because of their large number of electrons, and fifth-row elements are still relatively unknown from a theoretical point of view. unknown from a theoretical point of view. A large number of problems in this region of the periodic table, such as the nature of the metal-metal multiple bonds,(2) the irregularities in Sn and Te crystals,(3) the chemistry of mercury and lead,(4) and the chemistry of the heavier halogen comound(5) deserve further attention. In addition to the complexity of the traditional computational procedure when treating systems containing heavy elements, one must, for most of the elements in question, include relativistic effects. It is now well established that calculations of structure and properties for molecules containing heavy elements must take these effects into consideration.(6)

Keywords

Corn Mercury Platinum Iodine Uranium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. R. A. Blomberg and P. E. M. Siegbahn, Mol. Phys. 47, 127 (1982).CrossRefGoogle Scholar
  2. 2.
    M. M. Goodgame and W. A. Goddard III, Phys. Rev. Lett. 48, 135 (1982)CrossRefGoogle Scholar
  3. W. C. Trogler and H. B. Gray, Acc. Chem. Res. 11, 232(1978)CrossRefGoogle Scholar
  4. B. G. Bürsten and E. A. Cotton, Chem. Soc. Faraday Symp. 14, 180 (1980).CrossRefGoogle Scholar
  5. 3.
    G. B. Johansson, Thesis, Chalmars University of Technology, Gothenburg, Sweden, 1978.Google Scholar
  6. 4.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, A Comprehensive Text, Wiley, New York (1980).Google Scholar
  7. 5.
    L. J. Saethre, O. Gropen, and J. Sletten, Acta Chem. Scand. A 42, 16 (1988).CrossRefGoogle Scholar
  8. 6.
    P. Pyykkö and J. P. Desclaux, Acc. Chem. Res. 12, 276 (1979);CrossRefGoogle Scholar
  9. K. S. Pitzer, ibid. 12, 271 (1979).Google Scholar
  10. 7.
    W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York (1986).Google Scholar
  11. 8.
    S. Huzinaga, J. Andzelm, M. Klubokowski, E. Radzio, J. Andzelm, Y. Sakai, and H. Tatawaki, Gaussian Basis Sets for Molecular Calculations, Elsevier, Amsterdam (1984).Google Scholar
  12. 9.
    V. Fock, M. Vesslow, and M. Petraschen, Zh. Eksp. Teor. Fiz. 10, 723 (1940).Google Scholar
  13. 10.
    V. Bonifacic and S. Huzinaga, J. Chem. Phys. 60, 2779 (1974).CrossRefGoogle Scholar
  14. 11.
    Y. Sakai and S. Huzinaga, J. Chem. Phys. 76, 2537 (1982).CrossRefGoogle Scholar
  15. 12.
    Y. Sakai and S. Huzinaga, J. Chem. Phys. 76, 2552 (1982).CrossRefGoogle Scholar
  16. 13.
    S. Huzinaga, M. Klubokowski, and Y. Sakai, J. Phys. Chem. 88, 4880 (1984).CrossRefGoogle Scholar
  17. 14.
    J. Andzelm, S. Huzinaga, M. Klubokowski, and E. Radzio, Mol. Phys. 52, 1495 (1984).CrossRefGoogle Scholar
  18. 15.
    O. Gropen, L. G. M. Petterson, and U. Wahlgren, Chem. Phys. 66, 453 (1982).CrossRefGoogle Scholar
  19. 16.
    O. Gropen, L. G. M. Petterson, and U. Wahlgren, Chem. Phys. 66, 459 (1982).CrossRefGoogle Scholar
  20. 17.
    L. G. M. Petterson, U. Wahlgren, and O. Gropen, Chem. Phys. 80, 7 (1983).CrossRefGoogle Scholar
  21. 18.
    A. StrØrnberg, O. Gropen, and U. Wahlgren, J. Chem. Phys. 80, 1593 (1984).CrossRefGoogle Scholar
  22. 19.
    L. G. M. Petterson, U. Wahlgren, and O. Gropen, J. Chem. Phys. 86, 2176 (1987).CrossRefGoogle Scholar
  23. 20.
    L. R. Kahn and W. A. Goddard III, J. Chem. Phys. 56, 2685 (1972).CrossRefGoogle Scholar
  24. 21.
    L. R. Kahn, P. Baybutt, and D. G. Truhlar, J. Chem. Phys. 65, 3826 (1976).CrossRefGoogle Scholar
  25. 22.
    A. K. Rappe, T. A. Smedley, and W. A. Goddard III, J. Chem. Phys. 85, 1662 (1981).CrossRefGoogle Scholar
  26. 23.
    P. J. Hay, W. R. Wadt, and L. R. Kahn, J. Chem. Phys. 68, 3059 (1978).CrossRefGoogle Scholar
  27. 24.
    L. R. Kahn, Int. J. Quant. Chem. XXV, 149 (1984).CrossRefGoogle Scholar
  28. 25.
    P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270, 284, 299 (1985).CrossRefGoogle Scholar
  29. 26.
    Y. S. Lee, W. C. Ermler, and K. S. Pitzer, J. Chem. Phys. 67, 5861 (1977).CrossRefGoogle Scholar
  30. 27.
    P. A. Christiansen, Y. S. Lee, and K. S. Pitzer, J. Chem. Phys. 71, 4445 (1979).CrossRefGoogle Scholar
  31. 28.
    W. C. Ermler, Y. S. Lee, P. A. Christiansen, and K. S. Pitzer, Chem. Phys. Lett. 81, 70 (1981).CrossRefGoogle Scholar
  32. 29.
    J. H. Yates, W. C. Ermler, and N. W. Winter, J. Chem. Phys. 75, 5410 (1981).CrossRefGoogle Scholar
  33. 30.
    K. S. Pitzer, Int. J. Quant. Chem. XXV, 131 (1984).CrossRefGoogle Scholar
  34. 31.
    K. S. Pitzer, Relativistic Effects in Atoms, Molecules and Solids, Proceedings of a NATO Advanced Study Institute, Vancouver, Canada, Plenum Press, New York (1981), p. 403.Google Scholar
  35. 32.
    L. F. Pacios and P. A. Christiansen, J. Chem. Phys. 82, 2664 (1985).CrossRefGoogle Scholar
  36. 33.
    J. C. Barthelat, Ph. Durand, and A. Seraflni, Mol. Phys. 33, 159, 181 (1977).CrossRefGoogle Scholar
  37. 34.
    A. Seraflni, J. C. Barthelat, and Ph. Durand, Mol. Phys. 36, 1341 (1978).CrossRefGoogle Scholar
  38. 35.
    A. S. Ewig and J. R. Van Wazer, J. Chem. Phys. 62, 1521 (1975).CrossRefGoogle Scholar
  39. 36.
    M. E. Schwartz and J. D. Switalski, J. Chem. Phys. 62, 1521 (1975).CrossRefGoogle Scholar
  40. 37.
    G. B. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B 26, 4199 (1982).CrossRefGoogle Scholar
  41. 38.
    P. A. Christiansen, W. C. Ermler, and K. S. Pitzer, Ann. Rev. Phys. Chem. 36, 407 (1985).CrossRefGoogle Scholar
  42. 39.
    M. Krauss and W. J. Stevens, Ann. Rev. Phys. Chem. 35, 357 (1984).CrossRefGoogle Scholar
  43. 40.
    L. G. M. Petterson and U. Wahlgren, Chem. Phys. 69, 185 (1982).CrossRefGoogle Scholar
  44. 41.
    J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959).CrossRefGoogle Scholar
  45. 42.
    J. D. Weeks and S. A. Rice, J. Chem. Phys. 49, 2741 (1968).CrossRefGoogle Scholar
  46. 43.
    J. D. Weeks, A. Hazi, and S. A. Rice, Adv. Chem. Phys. 16, 283 (1969).CrossRefGoogle Scholar
  47. 44.
    J. N. Bardsley, Care Stud. At. Phys. 4, 299 (1974).Google Scholar
  48. 45.
    W. A. Goddard III, Phys. Rev. 157, 73 (1968).CrossRefGoogle Scholar
  49. 46.
    O. Gropen, S. Huzinaga, and A. D. McLean, J. Chem. Phys. 73, 402 (1980).CrossRefGoogle Scholar
  50. 47.
    C. F. Melius and W. A. Goddard III, Phys. Rev. A 10, 1528 (1974).CrossRefGoogle Scholar
  51. 48.
    G. Hojer and J. Chung, Int. J. Quant. Chem. 14, 623 (1978).CrossRefGoogle Scholar
  52. 49.
    L. G. M. Petterson and A. StrØrnberg, Chem. Phys. Lett. 99, 122 (1983).CrossRefGoogle Scholar
  53. 50.
    J. P. Desclaux, At. Data Nucl. Data Tables 12, 311 (1973).CrossRefGoogle Scholar
  54. 51.
    L. Laaksonen, P. Pyykkö, and D. Sundholm, Comp. Phys. Commun. 4, 313 (1986).Google Scholar
  55. 52.
    A. Rosen and D. E. Ellis, J. Chem. Phys. 62, 3039 (1975).CrossRefGoogle Scholar
  56. 53.
    T. Ziegler, J. G. Snijders, and E. J. Baerends, J. Chem. Phys. 74, 1271 (1981).CrossRefGoogle Scholar
  57. 54.
    W.-D. Sepp, D. Kolb, W. Sengler, H. Hartung, and B. Fricke, Phys. Rev. 33, 3679 (1986).CrossRefGoogle Scholar
  58. 55.
    Y. S. Lee and A. D. McLean, J. Chem. Phys. 76, 735 (1982).CrossRefGoogle Scholar
  59. 56.
    J. P. Desclaux and P. Pyykkö, Chem. Phys. Lett. 39, 300 (1976).CrossRefGoogle Scholar
  60. 57.
    F. Mark and F. Rosicky, Chem. Phys. Lett. 74, 562 (1980).CrossRefGoogle Scholar
  61. 58.
    P. J. C. Aerts and W. C. Nieuwport, Int. J. Quant. Chem. 19, 267 (1986).Google Scholar
  62. 59.
    T. Aoyama, H. Yamakawa, and O. Matsuoka, J. Chem. Phys. 73, 1329 (1980).CrossRefGoogle Scholar
  63. 60.
    R. E. Moss, Advanced Molecular Quantum Mechanics, Chapman and Hall, London (1973).Google Scholar
  64. 61.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-electron and Two-Electron Atoms, Springer-Verlag, Berlin (1957).Google Scholar
  65. 62.
    R. D. Cowan and D. C. Griffin, J. Opt. Soc. Am. 66, 1010 (1976).CrossRefGoogle Scholar
  66. 63.
    J. Sucher, Phys. Rev. A 22, 348 (1980).CrossRefGoogle Scholar
  67. 64.
    B. A. Hess, Phys. Rev. A 32, 756 (1985).CrossRefGoogle Scholar
  68. 65.
    J. Almlöf, K. Jr. Fægri, and H. H. Grelland, Chem. Phys. Lett. 114, 53 (1985).CrossRefGoogle Scholar
  69. 66.
    M. Douglas and N. M. Kroll, Ann. Phys. (N.Y.) 82, 89 (1974).CrossRefGoogle Scholar
  70. 67.
    B. A. Hess, Phys. Rev. A 33, 3742 (1986).CrossRefGoogle Scholar
  71. 68.
    L. R. Kahn, P. J. Hay, and R. D. Cowan, J. Chem. Phys. 68, 2386 (1978).CrossRefGoogle Scholar
  72. 69.
    C. Froese-Fischer, The Hartree-Fock Method for Atoms: A Numerical Approach, Wiley, New York (1977).Google Scholar
  73. 70.
    C. Froese-Fischer, Comp. Phys. Com. 4, 107 (1972).CrossRefGoogle Scholar
  74. 71.
    Y. Ishikawa and G. Malli, J. Chem. Phys. 75, 5423 (1981).CrossRefGoogle Scholar
  75. 72.
    W. R. Wadt, Chem. Phys. Lett. 89, 245 (1982).CrossRefGoogle Scholar
  76. P.J. Hay, W. R. Wadt, L. R. Kahn, R. C. Raffenetti, and D.H. Philips, J. Chem. Phys. 71, 1767 (1979).CrossRefGoogle Scholar
  77. W. R. Wadt and P. J. Hay, J. Am. Chem. Soc. 101, 5198 (1979).CrossRefGoogle Scholar
  78. 73.
    M. Klubokowski, J. Comp. Chem. 4, 350 (1983).CrossRefGoogle Scholar
  79. 74.
    O. Gropen, Ø. Boland, and U. Wahlgren, to be published.Google Scholar
  80. 75.
    W. C. Ermler, Y. S. Lee, K. S. Pitzer, and N. W. Winther, J. Chem. Phys. 69, 976 (1978).CrossRefGoogle Scholar
  81. 76.
    W. J. Stevens and M. Krauss, Chem. Phys. Lett. 86, 320 (1982).CrossRefGoogle Scholar
  82. 77.
    P. S. Bagus, C. W. Bauschlicher Jr., C. J. Nelin, B. C. Laskowski, and M. Seel, J. Chem. Phys. 81, 3594 (1984).CrossRefGoogle Scholar
  83. 78.
    P. Pyykkö, Relativistic Theory of Atoms and Molecules: A Bibliography 1916–1985, Lecture notes in Chemistry, Vol.41, Springer, Berlin (1986).Google Scholar
  84. 79.
    P. Pyykkö, J. Chem. Soc. Faraday II 75, 1256 (1979).CrossRefGoogle Scholar
  85. 80.
    M. Krauss, W. J. Stevens, and H. Basch, J. Comp. Chem. 6, 287 (1985).CrossRefGoogle Scholar
  86. 81.
    P. J. Hay and R. L. Martin, J. Chem. Phys. 83, 5774 (1985).CrossRefGoogle Scholar
  87. 82.
    R. L. Martin, J. Phys. Chem. 87, 750 (1983).CrossRefGoogle Scholar
  88. 83.
    R. B. Ross and W. C. Ermler, J. Phys. Chem. 89, 5202 (1985).CrossRefGoogle Scholar
  89. 84.
    P. J. Hay, W. R. Wadt, I. R. Kahn, and Bobrowicz, J. Chem. Phys. 69, 984 (1978).CrossRefGoogle Scholar
  90. 85.
    K. P. Huber and G. Hertzberg, Molecular Spectra and Molecular Structure, Vol. IV, Constants of Diatomic Molecules, Van Nostrand-Reinhold, New York (1979).Google Scholar
  91. 86.
    H. Basch and S. Topiol, J. Chem. Phys. 71, 802 (1979).CrossRefGoogle Scholar
  92. 87.
    C. M. Rohlfing, P. J. Hay, and R. L. Martin, J. Chem. Phys. 85, 1447 (1986).CrossRefGoogle Scholar
  93. 88.
    S. W. Wang and K. S. Pitzer, J. Chem. Phys. 79, 3851 (1983).CrossRefGoogle Scholar
  94. 89.
    D. A. Kleier and W. R. Wadt, J. Am. Chem. Soc. 102, 6909 (1980).CrossRefGoogle Scholar
  95. 90.
    A. Bernier and P. Millie, Chem. Phys. 106, 195 (1986).CrossRefGoogle Scholar
  96. 91.
    D. StrØrnberg, U. Wahlgren, and O. Gropen, to be published.Google Scholar
  97. 92.
    P. A. Christiansen, K. Balasubramanian, and K. S. Pitzer, J. Chem. Phys. 76, 5087 (1982).CrossRefGoogle Scholar
  98. 93.
    P. A. Christiansen and K. S. Pitzer, J. Chem. Phys. 73, 5160 (1980).CrossRefGoogle Scholar
  99. 94.
    P. A. Christiansen and K. S. Pitzer, J. Chem. Phys. 77, 589 (1981).Google Scholar
  100. 95.
    P. A. Christiansen, J. Chem. Phys. 79, 2928 (1983).CrossRefGoogle Scholar
  101. 96.
    K. Balasubramanian, J. Chem. Phys. 85, 1443 (1986).CrossRefGoogle Scholar
  102. 97.
    K. Balasubramanian and K. S. Pitzer, J. Chem. Phys. 78, 321 (1983).CrossRefGoogle Scholar
  103. 98.
    P. Hafner, P. Habitz, Y. Ishikawa, E. Wechsel-Trakowski, and W. H. E. Schwartz, Chem. Phys. Lett. 80, 311 (1981).CrossRefGoogle Scholar
  104. 99.
    G. Pacchioni, Mol. Phys. 55, 211 (1985).CrossRefGoogle Scholar
  105. 100.
    Y. S. Lee, W. C. Ermler, and K. S. Pitzer, J. Chem. Phys. 73, 360 (1980).CrossRefGoogle Scholar
  106. 101.
    S. Huzinaga, private communication.Google Scholar
  107. 102.
    C. W. Bauschlicher Jr., Chem. Phys. Lett. 129, 586 (1986)CrossRefGoogle Scholar
  108. I. Panas, P. Siegbahn, and U. Wahlgren, in press.Google Scholar
  109. 103.
    W. Schneider and Thiel, J. Chem. Phys, 86, 923 (1987).CrossRefGoogle Scholar
  110. 104.
    W. R. Wadt, J. Chem. Phys. 86, 339 (1987).CrossRefGoogle Scholar
  111. 105.
    S. R. Lanfhoff, L. G. M. Petterson, C. W. Bauschlicher Jr., and H. Partridge, J. Chem. Phys. 86, 268 (1987).CrossRefGoogle Scholar
  112. 106.
    P. J. Hay and C. M. Rohlfing, Nato ASI Ser., Ser. C 176, 135 (1986) (Quantum Chem.: Challenge Transition Met. Coord. Chem.).Google Scholar
  113. 107.
    P. J. Hay, J. Am. Chem. Soc. 109, 705 (1987).CrossRefGoogle Scholar
  114. 108.
    S. P. Walsh, C. W. Bauschlicher Jr., and S. R. Langhoff, J. Chem. Phys. 85, 5900 (1986).CrossRefGoogle Scholar
  115. 109.
    K. Balasubramanian, J. Chem. Phys. 85, 3401 (1986).CrossRefGoogle Scholar
  116. 110.
    C. M. Rohlfing, P. J. Hay, and R. L. Martin, J. Chem. Phys. 85, 1447 (1986).CrossRefGoogle Scholar
  117. 111.
    S. Y. Lee and Y. S. Lee, Bull. Korean Chem. Soc. 7, 218 (1986).Google Scholar
  118. 112.
    A. Bernier, P. Millie, and M. Pellisier, Chem. Phys. 106, 195 (1986).CrossRefGoogle Scholar
  119. 113.
    K. Balasubramanian, Chem. Phys. Lett. 127, 585 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Odd Gropen
    • 1
  1. 1.Institute of Mathematical and Physical SciencesThe University of TromsøTromsøNorway

Personalised recommendations