Mediating Effects of DNA on Some Photochemical Processes

  • Stephen J. Atherton


The work which follows may be thought of in terms of photosensitization of simple one electron transfer reactions and of the way in which the DNA environment effects both their yields and rates. Electron transfer reactions in DNA have important biological consequences; for example, they are involved in the formation and repair of thymine dimers which are the major damaging species produced in the cell by UV light (Jorns, 1987). Also, abnormally high mobilities for electrons in DNA have been reported (Van Lith et al., 1986), a phenomenon which may be of considerable importance in the understanding of many biological processes. The following studies make no pretense of being actual biological processes which commonly occur in living systems. The reactions studied are, however, electron transfer reactions which are caused to take place in the DNA matrix, and as such are valid reflections of the way DNA mediates such processes.


Ethidium Bromide Electron Transfer Reaction Flash Photolysis Pulse Radiolysis Ground State Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfassi, Z. B., and Schuler, R. H., 1985,J. Phys. Chem., 89:3359.CrossRefGoogle Scholar
  2. Armstrong, R. W., Kuruczec, T., and Strauss, U. P., 1970,J. Am. Chem. Soc., 92:3174.PubMedCrossRefGoogle Scholar
  3. Atherton, S. J., and Beaumont, P. C., 1984, Photobiochem.Photobiophys., 8:103.Google Scholar
  4. Atherton, S. J., and Beaumont, P. C., 1986,J. Phys. Chem., 90:2252.CrossRefGoogle Scholar
  5. Atherton, S. J., and Beaumont, P. C., 1987,J. Phys. Chem., 91:3933.Google Scholar
  6. Atherton, S. J., Hubig, S. M., Callan, T. J., Duncanson, J. A., Snowden, P. T., and Rodgers, M. A. J., 1987,J. Phys. Chem., 91:3137.CrossRefGoogle Scholar
  7. Burns, V. W. F., 1969,Arch. Biochem. Biophys., 183:420.CrossRefGoogle Scholar
  8. Eichhorn, G. L., 1975, “Inorganic Biochemistry”, Elsevier, Amsterdam, pp. 1210–1243.Google Scholar
  9. Foyt, D. C., 1981,Comput. Chem., 5:49.CrossRefGoogle Scholar
  10. Fromherz, P., and Reiger, B., 1986,J. Am. Chem. Soc., 108: 5361.CrossRefGoogle Scholar
  11. Gaugain, B., Barbet, J., Capelle, N., Roques, B. P., and Le Pecq, J.-B., 1978,Biochemistry, 17:5078.PubMedCrossRefGoogle Scholar
  12. Izatt, R. M., Christensen, J. J., and Rytting, J. H., 1971,Chem. Rev., 71:349.CrossRefGoogle Scholar
  13. Jorns, M. S., 1987,J. Am. Chem. Soc., 109:3133.CrossRefGoogle Scholar
  14. Le Pecq, J.-B., and Paoletti, C. J., 1967,J. Mol. Biol., 27:87.CrossRefGoogle Scholar
  15. Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, “Molecular Cloning”, Cold Spring Harbour Laboratory, New York, p. 458.Google Scholar
  16. Manning, G. S., 1977,Biophys. Chem., 7:95.PubMedCrossRefGoogle Scholar
  17. Manning, G. S., 1978,Q. Rev. Biophys., 11:179.PubMedCrossRefGoogle Scholar
  18. Rodgers, M. A. J., 1984,Radiat. Phys. Chem., 23:245.Google Scholar
  19. Van Lith, D., Warman, J. M., De Haas, M. P., and Hummel, A., 1986,J. Chem. Soc. Faraday I, 82:2933.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Stephen J. Atherton
    • 1
  1. 1.Center for Fast Kinetics ResearchUniversity of Texas at AustinAustinUSA

Personalised recommendations