The Liquid-Solid Two-Phase Coexistence

Part of the NATO ASI Series book series (NSSB, volume 174)

Abstract

Phase transitions are macroscopic phenomena which one should in principle be able to describe by equilibrium statistical mechanics. Progress has however been very slow in this field over the past decades. This is particularly true for the liquid-solid transition which is nevertheless a very general property of matter. During the present decade some progress has been achieved in the theoretical study of the freezing of simple model systems such as the hard sphere system. Analysis of the experimental 1 and computer simulation2 studies makes it moreover plausible that the freezing of more realistic systems is monitored by the freezing of some underlying hard sphere system so that the theoretical study of the liquid-solid coexistence of more realistic systems may soon also become accessible to equilibrium statistical mechanics. Considerable progress has been realized in recent years in the theory of freezing by reformulating the pioneering (but unsuccessful) work of Kirkwood and Monroe into the more modern language of the density functional theory3. The original work of Kirkwood and Monroe4 was formulated on the basis of the Born-Green-Yvon hierarchy which in retrospect is not a good starting point since this hierarchy depends explicitly on the interaction potential whereas freezing is known2 to be largely independent of the details of the potential.

Keywords

Entropy Anisotropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Stishov, Sov. Phys. Usp. 17, 625 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    D. Frenkel and J. P. McTague, Ann. Rev. Phys. Chem., 31, 491 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    R. Evans, Adv. Physn., 28, 143 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    J. G. Kirkwood and E. Monroe, J. Chem. Phys., 9,514 (1941)ADSCrossRefGoogle Scholar
  5. 5.
    T. V. Ramakrishnan and M. Yussouff, Phys. Rev., B19, 2775 (1979)ADSGoogle Scholar
  6. V. N. Ryzhov and E. E. Tareyeva, Theor. Math. Phys., 48, 835 (1981)CrossRefGoogle Scholar
  7. N. H. March and M. P. Tosi, Phys. Chem. Liq., 11,79 (1981)CrossRefGoogle Scholar
  8. A. D. J. Haymet and D. W. Oxtoby, J. Chem. Phys., 74, 2559 (1981)ADSCrossRefGoogle Scholar
  9. G. L. Jones and U. Mohanty, Molec. Phys., 54, 1241 (1985)ADSCrossRefGoogle Scholar
  10. 6.
    P. Tarazona, Molec. Phys., 52, 81 (1984)ADSCrossRefGoogle Scholar
  11. W. A. Curtin and N. W. Ashcroft, Phys. Rev., A32, 2909 (1985)ADSGoogle Scholar
  12. 7.
    M. Baus and J. L. Colot, Molec. Phys., 55, 653 (1985)ADSCrossRefGoogle Scholar
  13. J. L. Barrat, M. Baus and J. P. Hansen, Phys. Rev. Lett., 56, 1063 (1986)ADSCrossRefGoogle Scholar
  14. J. P. Stoessel and P. B. Wolynes, J. Chem. Phys. (to appear)Google Scholar
  15. F. Igloi and J. Hafner, J. of Phys. C(to appear)Google Scholar
  16. 8.
    P. N. Pusey and W. Van Megen, Nature., 320, 340 (1986)ADSCrossRefGoogle Scholar
  17. 9.
    M. Baus and J. L. Colot, J. of Phys C., 18, L365 (1985)ADSCrossRefGoogle Scholar
  18. J. L. Colot and M. Baus, Molec. Phys., 56, 807 (1985)ADSCrossRefGoogle Scholar
  19. J. L. Colot and M. Baus and H. Xu, Molec. Phys., 57, 809 (1986)ADSCrossRefGoogle Scholar
  20. 10.
    C. Marshall, B. B. Laird and A. D. J. Haymet, Chem. Phys. Lett., 122, 320 (1985)ADSCrossRefGoogle Scholar
  21. W. A. Curtin and N. W. Ashcroft, Phys. Rev. Lett., 56, 2775 (1986)ADSCrossRefGoogle Scholar
  22. 11.
    D. W. Oxtoby and A. D. J. Haymet, J. Chem. Phys., 76, 6262 (1982)ADSCrossRefGoogle Scholar
  23. S. M. Moore and H. J. Raveche, to be publishedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • M. Baus
    • 1
  1. 1.Chimie-Physique II, C.P. 231Université Libre de BruxellesBrusselsBelgium

Personalised recommendations